Late Quaternary depositional history of the North Evvoikos Gulf, Aegean Sea, Greece

2006 ◽  
Vol 232 (3-4) ◽  
pp. 157-172 ◽  
Author(s):  
T.H. Van Andel ◽  
C. Perissoratis
1971 ◽  
Vol 11 (1) ◽  
pp. 90
Author(s):  
K. J. Bird ◽  
W. F. Coleman ◽  
H. Crocker

Four-arm dipmeter interpretation has been integrated with other wireline logs, lithologic and palaeontologic data, and regional geology to arrive at a history of the deposition in a portion of the North Perth Basin.The Permian sediments were deposited in a moderate to low energy, paralic to marine environment. They were unconformably overlain by a thin transgressive Lower Triassic sand and deepwater marine shale. The Middle Triassic sediments were deposited as a regressive marine sequence under the influence of a strong southwesterly uplift, and culminated in piedmont talus deposits of Upper Triassic age.In the Lower Jurassic this area evolved through a flood-plain environment to a paralic environment with a northeast-southwest oriented coastline and a northern source area. During the Middle Jurassic gentle crustal movements, coupled with an increasingly active northern and eastern source area, resulted in several cycles of nearshore deposition, and finally a marine transgression.Subsequent violent tectonic uplift to the east in the Upper Jurassic produced massive first generation sands which were deposited in a mainly continental environment.


2021 ◽  
Author(s):  
◽  
Sanjay Paul Samuel

<p>The Paleocene interval within the Canterbury Basin has been relatively understudied with respect to the Neogene and Cretaceous intervals. Within the Paleocene interval is the Tartan Formation and the Charteris Bay Sandstone, which are potential source and reservoir rocks respectively. These two formations have not been previously mapped in the offshore Canterbury Basin and their limits have not been defined. This study utilises a database of nearly 12,000km of 2D seismic data together with data from four open–file wells and sidewall core samples from three wells and newly availiable biostratigraphic information to better constrain the chronostratigraphical interpretation of seismic data. Seismic mapping together with corroboration from well correlation and core lithofacies analysis revealed new insights into the development of the offshore Canterbury Basin through the Paleocene. These include the delineation of the lateral extents and thicknesses of the Tartan Formation and Charteris Bay Sandstone and location of the palaeo shelf–slope break and also the development of a new well correlation panel that incorporates the Tartan Formation for the first time.  This study presents four new paleogeographic maps for the offshore Canterbury Basin that significantly improves our understanding of the development of the basin during the Paleocene. These maps show that during the Earliest Paleocene, the mudstones of the Katiki Formation were being deposited in the south of the study area, with the siltier sediments of the Conway Formation being deposited in the north. The coarser grained Charteris Bay Sandstone was deposited from Early to possibly Middle Paleocene in the northeast. The mudstones of the Moeraki Formation were being deposited in the south at this time. From Middle to Late Paleocene, the mudstones of the Moeraki Formation were deposited in the south and these mudstones onlapped against the Charteris Bay Sandstone which remained as a high in the north. The Tartan Formation was deposited during the Late Paleocene in the central and southern areas of the offshore Canterbury Basin, during a relative fall in sea–level. Deposition had ceased in the north of the study area or erosion possibly removed Late Paleocene sediments from there. During the Latest Paleocene, the mudstones of the Moeraki Formation were deposited over the Tartan Formation in the central and southern parts of the offshore Canterbury Basin with the northern area undergoing erosion, sediment bypass or both.</p>


2021 ◽  
Author(s):  
◽  
Sanjay Paul Samuel

<p>The Paleocene interval within the Canterbury Basin has been relatively understudied with respect to the Neogene and Cretaceous intervals. Within the Paleocene interval is the Tartan Formation and the Charteris Bay Sandstone, which are potential source and reservoir rocks respectively. These two formations have not been previously mapped in the offshore Canterbury Basin and their limits have not been defined. This study utilises a database of nearly 12,000km of 2D seismic data together with data from four open–file wells and sidewall core samples from three wells and newly availiable biostratigraphic information to better constrain the chronostratigraphical interpretation of seismic data. Seismic mapping together with corroboration from well correlation and core lithofacies analysis revealed new insights into the development of the offshore Canterbury Basin through the Paleocene. These include the delineation of the lateral extents and thicknesses of the Tartan Formation and Charteris Bay Sandstone and location of the palaeo shelf–slope break and also the development of a new well correlation panel that incorporates the Tartan Formation for the first time.  This study presents four new paleogeographic maps for the offshore Canterbury Basin that significantly improves our understanding of the development of the basin during the Paleocene. These maps show that during the Earliest Paleocene, the mudstones of the Katiki Formation were being deposited in the south of the study area, with the siltier sediments of the Conway Formation being deposited in the north. The coarser grained Charteris Bay Sandstone was deposited from Early to possibly Middle Paleocene in the northeast. The mudstones of the Moeraki Formation were being deposited in the south at this time. From Middle to Late Paleocene, the mudstones of the Moeraki Formation were deposited in the south and these mudstones onlapped against the Charteris Bay Sandstone which remained as a high in the north. The Tartan Formation was deposited during the Late Paleocene in the central and southern areas of the offshore Canterbury Basin, during a relative fall in sea–level. Deposition had ceased in the north of the study area or erosion possibly removed Late Paleocene sediments from there. During the Latest Paleocene, the mudstones of the Moeraki Formation were deposited over the Tartan Formation in the central and southern parts of the offshore Canterbury Basin with the northern area undergoing erosion, sediment bypass or both.</p>


Author(s):  
Leonardo S Miranda ◽  
Bernardo O Prestes ◽  
Alexandre Aleixo

Abstract Here we use an integrative approach, including coalescent-based methods, isolation–migration and species distribution models, to infer population structure, divergence times and diversification in the two species of the genus Cymbilaimus (Aves, Thamnophilidae). Our results support a recent and rapid diversification with both incomplete lineage sorting and gene flow shaping the evolutionary history of Cymbilaimus. The spatio-temporal pattern of cladogenesis suggests that Cymbilaimus originated in the north/western portion of cis-Andean South America and then diversified into the Brazilian Shield and Central America after consolidation of the modern Amazonian drainage and the Andean range. This evolutionary scenario is explained by cycles of range expansion and dispersal, followed by isolation, and recurrent gene flow, during the last 1.2 Myr. Our results agree with those recently reported for other closely related suboscine lineages, whereby the window of introgression between closely related taxa remains open for up to a few million years after their original split. In Cymbilaimus, introgression was recurrent between C. lineatus and C. sanctaemariae, even after they acquired vocal and ecological differentiation, supporting the claim that at least in Neotropical suboscines, full reproductive compatibility may take millions of years to evolve and cannot be interpreted as synonymous with a lack of speciation.


Sign in / Sign up

Export Citation Format

Share Document