Reconstructing calcification in ancient coccolithophores: Individual coccolith weight and morphology of Coccolithus pelagicus (sensu lato)

2012 ◽  
Vol 92-93 ◽  
pp. 29-39 ◽  
Author(s):  
Joana C. Cubillos ◽  
Jorijntje Henderiks ◽  
Luc Beaufort ◽  
William R. Howard ◽  
Gustaaf M. Hallegraeff
Author(s):  
Filomena Diniz ◽  
Carlos Marques da Silva ◽  
Mário Cachão

No presente trabalho são apresentados dados palinológicos inéditos da importante sequência do Pliocénico português em Pombal. Em paralelo, conjugando os dados dos vários proxies paleontológicos estudados nesta sequência, é feito o ponto da situação do conhecimento sobre nanofósseis calcários e associações de fósseis de moluscos, nomeadamente no que concerne ao seu significado biostratigráfico, paleoecológico e paleobiogeográfico. No tocante à Palinologia, a investigação dos níveis fossilíferos do Pliocénico da região em estudo evidencia uma microflora de carácter mesófilo. A presença de Taxodiaceae substituindo táxones mais termófilos como Cyrillaceae / Clethraceae indicaria descida da temperatura relativamente ao Zancleano, bem patente na sequência de Rio Maior. Na secção média da camada lignitosa (sondagem P1) a presença de Symplocos, táxon megamesotérmico, pressupõe uma ligeira subida de temperatura. O estudo palinológico da sequência representada na sondagem F58 da Bacia de Rio Maior demonstra que ela abrange o Zancleano e o Placenciano; a microflora de Pombal aqui descrita e discutida é correlacionável com o topo do conjunto esporo-polínico F da referida sequência, posicionando-se no topo do Zancleano ou na metade inferior do Placenciano ante 3,0 Ma. Em termos do significado das associações de nanofósseis calcários ricas em Coccolithus pelagicus s.l. é proposta uma interpretação, não baseada em condições paleoambientais subpolares oceânicas, mas sim em condições de afloramento costeiro (de upwelling) persistente e maior paleoprodutividade oceânica ao largo da costa ocidental da Ibéria de então. A associação de moluscos gastrópodes indica ambiente marinho pouco profundo, de salinidade normal e temperaturas subtropicais. Esta associação de gastrópodes sugere correlação com a Mediterranean Pliocene Molluscan Unit 1 do Mediterrânico, i.e., com uma idade pliocénica ante 3,0 Ma. A conjugação dos dados dos nanofósseis calcários e dos moluscos sugere para os níveis fossilíferos marinhos pliocénicos da região de Pombal um posicionamento cronostratigráfico abrangendo desde o topo do Zancleano até à metade inferior do Placenciano, desde cerca dos 3,70-3,61 Ma aos 3,0 Ma, ou mesmo apenas até aos 3,52 Ma, se se tiverem em conta dados dados isotópicos de 87Sr/86Sr.


2015 ◽  
Vol 472 ◽  
pp. 24-31 ◽  
Author(s):  
A.C. Gerecht ◽  
L. Šupraha ◽  
B. Edvardsen ◽  
G. Langer ◽  
J. Henderiks

2014 ◽  
Vol 11 (1) ◽  
pp. 1021-1051 ◽  
Author(s):  
A. C. Gerecht ◽  
L. Šupraha ◽  
B. Edvardsen ◽  
I. Probert ◽  
J. Henderiks

Abstract. Rising ocean temperatures will likely increase stratification of the water column and reduce nutrient input into the photic zone. This will increase the likelihood of nutrient limitation in marine microalgae, leading to changes in the abundance and composition of phytoplankton communities, which in turn will affect global biogeochemical cycles. Calcifying algae, such as coccolithophores, influence the carbon cycle by fixing CO2 into particulate organic carbon (POC) through photosynthesis and into particulate inorganic carbon (PIC) through calcification. As calcification produces a net release of CO2, the ratio of PIC / POC determines whether coccolithophores act as a source (PIC / POC > 1) or a sink (PIC / POC < 1) of atmospheric CO2. We studied the effect of phosphorus (P-) limitation and temperature stress on the physiology and PIC / POC ratios of two subspecies of Coccolithus pelagicus. This large and heavily calcified species (PIC / POC generally > 1.5) is a major contributor to calcite export from the photic zone into deep-sea reservoirs. Phosphorus limitation did not influence exponential growth rates in either subspecies, but P-limited cells had significantly lower cellular P-content. A 5 °C temperature increase did not affect exponential growth rates either, but nearly doubled cellular P-content under both high and low phosphate availability. The PIC / POC ratios did not differ between P-limited and nutrient-replete cultures, but at elevated temperature (from 10 to 15 °C) PIC / POC ratios decreased by 40–60%. Our results suggest that elevated temperature may intensify P-limitation due to a higher P-requirement to maintain growth and POC production rates, possibly reducing abundances in a warmer ocean. Under such a scenario C. pelagicus may decrease its calcification rate relative to photosynthesis, resulting in PIC / POC ratios < 1 and favouring CO2-sequestration over release. Phosphorus limitation by itself is unlikely to cause changes in the PIC / POC ratio in this species.


2010 ◽  
Vol 6 (6) ◽  
pp. 771-785 ◽  
Author(s):  
R. E. M. Rickaby ◽  
J. Henderiks ◽  
J. N. Young

Abstract. All species of coccolithophore appear to respond to perturbations of carbonate chemistry in a different way. Here, we show that the degree of malformation, growth rate and stable isotopic composition of organic matter and carbonate produced by two contrasting species of coccolithophore (Gephyrocapsa oceanica and Coccolithus pelagicus ssp. braarudii) are indicative of differences between their photosynthetic and calcification response to changing DIC levels (ranging from ~1100 to ~7800 μmol kg−1) at constant pH (8.13 ± 0.02). Gephyrocapsa oceanica thrived under all conditions of DIC, showing evidence of increased growth rates at higher DIC, but C. braarudii was detrimentally affected at high DIC showing signs of malformation, and decreased growth rates. The carbon isotopic fractionation into organic matter and the coccoliths suggests that C. braarudii utilises a common internal pool of carbon for calcification and photosynthesis but G. oceanica relies on independent supplies for each process. All coccolithophores appear to utilize bicarbonate as their ultimate source of carbon for calcification resulting in the release of a proton. But, we suggest that this proton can be harnessed to enhance the supply of CO2(aq) for photosynthesis either from a large internal HCO3- pool which acts as a pH buffer (C. braarudii), or pumped externally to aid the diffusive supply of CO2 across the membrane from the abundant HCO3- (G. oceanica), likely mediated by an internal and external carbonic anhydrase respectively. Our simplified hypothetical spectrum of physiologies may provide a context to understand different species response to changing pH and DIC, the species-specific εp and calcite "vital effects", as well as accounting for geological trends in coccolithophore cell size.


2014 ◽  
Vol 11 (13) ◽  
pp. 3531-3545 ◽  
Author(s):  
A. C. Gerecht ◽  
L. Šupraha ◽  
B. Edvardsen ◽  
I. Probert ◽  
J. Henderiks

Abstract. Rising ocean temperatures will likely increase stratification of the water column and reduce nutrient input into the photic zone. This will increase the likelihood of nutrient limitation in marine microalgae, leading to changes in the abundance and composition of phytoplankton communities, which in turn will affect global biogeochemical cycles. Calcifying algae, such as coccolithophores, influence the carbon cycle by fixing CO2 into particulate organic carbon through photosynthesis (POC production) and into particulate inorganic carbon through calcification (PIC production). As calcification produces a net release of CO2, the ratio of PIC to POC production determines whether coccolithophores act as a source (high PIC / POC) or a sink (low PIC / POC) of atmospheric CO2. We studied the effect of phosphorus (P-) limitation and high temperature on the physiology and the PIC / POC ratio of two subspecies of Coccolithus pelagicus. This large and heavily calcified species is a major contributor to calcite export from the photic zone into deep-sea reservoirs. Phosphorus limitation did not influence exponential growth rates in either subspecies, but P-limited cells had significantly lower cellular P-content. One of the subspecies was subjected to a 5 °C temperature increase from 10 °C to 15 °C, which did not affect exponential growth rates either, but nearly doubled cellular P-content under both high and low phosphate availability. This temperature increase reduced the PIC / POC ratio by 40–60%, whereas the PIC / POC ratio did not differ between P-limited and nutrient-replete cultures when the subspecies were grown near their respective isolation temperature. Both P-limitation and elevated temperature significantly increased coccolith malformations. Our results suggest that a temperature increase may intensify P-limitation due to a higher P-requirement to maintain growth and POC production rates, possibly reducing abundances in a warmer ocean. Under such a scenario C. pelagicus may decrease its calcification rate relative to photosynthesis, thus favouring CO2 sequestration over release. It seems unlikely that P-limitation by itself causes changes in the PIC / POC ratio in this species.


2007 ◽  
Vol 42 (2) ◽  
pp. 125-136 ◽  
Author(s):  
Alison R. Taylor ◽  
Mark A. Russell ◽  
Glenn M. Harper ◽  
Toby f. T. Collins ◽  
Colin Brownlee

Sign in / Sign up

Export Citation Format

Share Document