Norwegian–Russian cooperation on oil-spill response in the Barents Sea

Marine Policy ◽  
2013 ◽  
Vol 39 ◽  
pp. 257-264 ◽  
Author(s):  
Are Kristoffer Sydnes ◽  
Maria Sydnes
2017 ◽  
Vol 2017 (1) ◽  
pp. 1146-1165
Author(s):  
Johan Marius Ly ◽  
Rune Bergstrøm ◽  
Ole Kristian Bjerkemo ◽  
Synnøve Lunde

Abstract The Norwegian Arctic covers Svalbard, Bear Island, Jan Mayen and the Barents Sea. 80% of all shipping activities in the Arctic are within Norwegian territorial waters and the Exclusive Economic Zone. To reduce the risk for accidents, the Norwegian authorities have established several preventive measures. Among these are ship reporting systems, traffic separation schemes in international waters and surveillance capabilities. If an accident has occurred and an oil spill response operation must be organized - resources, equipment, vessels and manpower from Norwegian and neighboring states will be mobilized. In 2015, the Norwegian Coastal Administration finalized an environmental risk-based emergency response analysis for shipping incidents in the Svalbard, Bear Island and Jan Mayen area. This scenario-based analysis has resulted in a number of recommendations that are currently being implemented to be better prepared for oil spill response operations in the Norwegian Arctic. Further, a large national oil spill response exercise in 2016 was based on one of these scenarios involving at sea and onshore oil spill response at Svalbard. The 2016 exercise, working within the framework of the Agreement on Cooperation on Marine Oil Pollution Preparedness and Response in the Arctic between Canada, Denmark, Finland, Iceland, Norway, Russia, Sweden and the USA (Arctic Council 2013), focused on a shipping incident in the Norwegian waters in the Barents Sea, close to the Russian border. Every year, as part of the Russian – Norwegian Oil Spill Response Agreement and the SAR Agreement in the Barents Sea, combined SAR and oil spill response exercises are organized. These are held every second year in Russia and every second year in Norway. There is an expected increased traffic and possible increased risk for accidents in the Arctic waters. In order to build and maintain an emergency response system to this, cooperation between states, communities, private companies and other stakeholders is essential. It is important that all actors that operate and have a role in the Arctic are prepared and able to help ensure the best possible emergency response plans. We depend on one another, this paper highlights some of the ongoing activities designed to strengthen the overall response capabilities in the Arctic.


Resources ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Victor Pavlov ◽  
Victor Cesar Martins de Aguiar ◽  
Lars Robert Hole ◽  
Eva Pongrácz

Increasing exploration and exploitation activity in the Arctic Ocean has intensified maritime traffic in the Barents Sea. Due to the sparse population and insufficient oil spill response infrastructure on the extensive Barents Sea shoreline, it is necessary to address the possibility of offshore accidents and study hazards to the local environment and its resources. Simulations of surface oil spills were conducted in south-east of the Barents Sea to identify oil pollution trajectories. The objective of this research was to focus on one geographical location, which lies along popular maritime routes and also borders with sensitive ecological marine and terrestrial areas. As a sample of traditional heavy bunker oil, IFO-180LS (2014) was selected for the study of oil spills and used for the 30-year simulations. The second oil case was medium oil type: Volve (2006)—to give a broader picture for oil spill accident scenarios. Simulations for four annual seasons were run with the open source OpenDrift modelling tool using oceanographic and atmospheric data from the period of 1988–2018. The modelling produced a 30-year probability map, which was overlapped with environmental data of the area to discuss likely impacts to local marine ecosystems, applicable oil spill response tools and favourable shipping seasons. Based on available data regarding the environmental and socio-economic baselines of the studied region, we recommend to address potential threats to marine resources and local communities in more detail in a separate study.


2016 ◽  
Author(s):  
Rune Pedersen ◽  
Hans Petter Dahlslett ◽  
Anne Wenke ◽  
Sønnøve McIvor ◽  
Svein Olav Drangeid

2017 ◽  
Vol 2017 (1) ◽  
pp. 1507-1522 ◽  
Author(s):  
CJ Beegle-Krause ◽  
Tor Nordam ◽  
Mark Reed ◽  
Ragnhild Lundmark Daae

ABSTRACT In ice covered waters, successful oil spill response requires predictions of where the oil and ice will travel. The International Association of Oil and Gas Producers (IOGP), Arctic Oil Spill Response Technology - Joint Industry Programme (JIP) funded research to improve oil spill response by leveraging new state-of-the-art ice forecasting into oil spill trajectory models. We present an overview of the systems and discuss how these advancements will provide responders with new information for spill preparedness and planning. The Nansen Environmental and Remote Sensing Center (NERSC) has developed two coupled ice-ocean models that cover the entire Arctic: TOPAZ4 and neXtSIM. TOPAZ4 uses both in situ ocean data and satellite data; the model also includes an ecosystem model. The neXtSIM model is a new high resolution (3km) coupled ice-ocean which uses daily sea ice thickness and concentration fields from satellites. SINTEF’s Oil Spill Contingency and Response (OSCAR) model can now use output from both TOPAZ and neXtSIM. The OSCAR user can view the ice conditions with the spill, and the oil trajectory is modified by the time dependent ice coverages. Case studies will be discussed that test the implementation for different areas of the Arctic. Through these case studies, we provide new types of information for spill responders. The OSCAR model also includes information on oil weathering in ice from extensive laboratory and flume data for oils in water with and without ice.Case Study 1: In the Beaufort Sea we compare observed ice drifter position time series with the ice drift calculated by the OSCAR model using input from the NERSC models. We then simulate a potential oil spill in the area.Case Study 2: The 2009 Joint Industry Project included fieldwork and modeling for oil released in marginal ice zone in the Barents Sea. In May 2009, 7000 liters of fresh Troll oil was released into the marginal ice zone to study the oil weathering, spreading and overall oil trajectory.


2012 ◽  
Vol 01 (01) ◽  
Author(s):  
Igor Ivichev Lars Robert Hole ◽  
Lev Karlin Cecilie Wettre ◽  
Johannes Röhrs

Sign in / Sign up

Export Citation Format

Share Document