High total organic carbon in surface waters of the northern Arabian Gulf: Implications for the oxygen minimum zone of the Arabian Sea

2018 ◽  
Vol 129 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Turki Al-Said ◽  
S.W.A. Naqvi ◽  
Faiza Al-Yamani ◽  
Alexandr Goncharov ◽  
Loreta Fernandes
2002 ◽  
Vol 68 (6) ◽  
pp. 2997-3002 ◽  
Author(s):  
Jaap S. Sinninghe Damsté ◽  
W. Irene C. Rijpstra ◽  
Ellen C. Hopmans ◽  
Fredrick G. Prahl ◽  
Stuart G. Wakeham ◽  
...  

ABSTRACT Intact core tetraether membrane lipids of marine planktonic Crenarchaeota were quantified in water column-suspended particulate matter obtained from four depth intervals (∼70, 500, 1,000 and 1,500 m) at seven stations in the northwestern Arabian Sea to investigate the distribution of the organisms at various depths. Maximum concentrations generally occurred at 500 m, near the top of the oxygen minimum zone, and the concentrations at this depth were, in most cases, slightly higher than those in surface waters. In contrast, lipids derived from eukaryotes (cholesterol) and from eukaryotes and bacteria (fatty acids) were at their highest concentrations in surface waters. This indicates that these crenarchaeotes are not restricted to the photic zone of the ocean, which is consistent with the results of recent molecular biological studies. Since the Arabian Sea has a strong oxygen minimum zone between 100 and 1,000 m, with minimum oxygen levels of <1 μM, the abundance of crenarchaeotal membrane lipids at 500 m suggests that planktonic Crenarchaeota are probably facultative anaerobes. The cell numbers we calculated from the concentrations of membrane lipids are similar to those reported for the Central Pacific Ocean, supporting the recent estimation of M. B. Karner, E. F. DeLong, and D. M. Karl ( Nature 409 : 507-510, 2001 ) that the world's oceans contain ca. 1028 cells of planktonic Crenarchaeota.


2019 ◽  
Vol 33 (12) ◽  
pp. 1715-1732 ◽  
Author(s):  
Sabine K. Lengger ◽  
Darci Rush ◽  
Jan Peter Mayser ◽  
Jerome Blewett ◽  
Rachel Schwartz‐Narbonne ◽  
...  

2019 ◽  
Author(s):  
Sabine Lengger ◽  
Darci Rush ◽  
Jan Mayser ◽  
Jerome Blewett ◽  
Rachel Schwartz-Narbonne ◽  
...  

2014 ◽  
Vol 73 (1) ◽  
pp. 51-67 ◽  
Author(s):  
A Jain ◽  
M Bandekar ◽  
J Gomes ◽  
D Shenoy ◽  
RM Meena ◽  
...  

2010 ◽  
Vol 57 (3) ◽  
pp. 384-393 ◽  
Author(s):  
Silvia E. Bulow ◽  
Jeremy J. Rich ◽  
Hema S. Naik ◽  
Anil K. Pratihary ◽  
Bess B. Ward

2018 ◽  
Vol 496 ◽  
pp. 248-256 ◽  
Author(s):  
Kuldeep D. More ◽  
William D. Orsi ◽  
Valier Galy ◽  
Liviu Giosan ◽  
Lijun He ◽  
...  

2012 ◽  
Vol 9 (3) ◽  
pp. 993-1006 ◽  
Author(s):  
W. R. Hunter ◽  
L. A. Levin ◽  
H. Kitazato ◽  
U. Witte

Abstract. The Arabian Sea oxygen minimum zone (OMZ) impinges on the western Indian continental margin between 150 and 1500 m, causing gradients in oxygen availability and sediment geochemistry at the sea floor. Oxygen availability and sediment geochemistry are important factors structuring macrofaunal assemblages in marine sediments. However, relationships between macrofaunal assemblage structure and sea-floor carbon and nitrogen cycling are poorly understood. We conducted in situ 13C:15N tracer experiments in the OMZ core (540 m [O2] = 0.35 μmol l–1) and lower OMZ boundary (800–1100 m, [O2] = 2.2–15.0 μmol l–1) to investigate how macrofaunal assemblage structure, affected by different oxygen levels, and C:N coupling influence the fate of particulate organic matter. No macrofauna were present in the OMZ core. Within the OMZ boundary, relatively high abundance and biomass resulted in the highest macrofaunal assimilation of particulate organic carbon (POC) and nitrogen (PON) at the lower oxygen 800 m stations ([O2] = 2.2–2.36 μmol l–1). At these stations the numerically dominant cirratulid polychaetes exhibited greatest POC and PON uptake. By contrast, at the higher oxygen 1100 m station ([O2] = 15.0 μmol l–1) macrofaunal C and N assimilation was lower, with POC assimilation dominated by one large solitary ascidian. Macrofaunal POC and PON assimilation were influenced by changes in oxygen availability, and significantly correlated to differences in macrofaunal assemblage structure between stations. However, macrofaunal feeding responses were ultimately characterised by preferential organic nitrogen assimilation, relative to their internal C:N budgets.


Sign in / Sign up

Export Citation Format

Share Document