membrane lipids
Recently Published Documents


TOTAL DOCUMENTS

2451
(FIVE YEARS 489)

H-INDEX

120
(FIVE YEARS 11)

2023 ◽  
Vol 83 ◽  
Author(s):  
E. Ibáñez-Arancibia ◽  
J. G. Farías ◽  
I. Valdebenito

Abstract The cold storage of milt implies potentials alterations in its quality because the storage generates as main process, free radicals that produce spermatozoa membrane lipids damage with the consequent motility and fertilising capacity disruptions. To decrease the damage generated by free radicals the cells have antioxidant defences (proteins, enzymes, and low molecular weight substances). The objective of the present study evaluated the time storage effect and different antioxidants prepared in spermatic diluents on sperm viability of O. mykiss milt stored at 4°C. The two-way ANOVA denoted that the time storage and antioxidant influence have significant effects separated or combined on viability parameters (sperm motility and viability, proteins concentrations and superoxide dismutase enzymatic activity in seminal plasma). In contrast, only the storage time affected the fertilising capacity and catalase enzymatic activity in seminal plasma. The resulting analysis can conclude that the antioxidant presence improves the viability of cold stored milt, especially the transport conditions and the antioxidants allow the fecundity despite motility decrease.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Shin Morioka ◽  
Hiroki Nakanishi ◽  
Toshiyoshi Yamamoto ◽  
Junya Hasegawa ◽  
Emi Tokuda ◽  
...  

AbstractPhosphoinositides are a family of membrane lipids essential for many biological and pathological processes. Due to the existence of multiple phosphoinositide regioisomers and their low intracellular concentrations, profiling these lipids and linking a specific acyl variant to a change in biological state have been difficult. To enable the comprehensive analysis of phosphoinositide phosphorylation status and acyl chain identity, we develop PRMC-MS (Phosphoinositide Regioisomer Measurement by Chiral column chromatography and Mass Spectrometry). Using this method, we reveal a severe skewing in acyl chains in phosphoinositides in Pten-deficient prostate cancer tissues, extracellular mobilization of phosphoinositides upon expression of oncogenic PIK3CA, and a unique profile for exosomal phosphoinositides. Thus, our approach allows characterizing the dynamics of phosphoinositide acyl variants in intracellular and extracellular milieus.


Author(s):  
Laura Laschke ◽  
Vadim Schütz ◽  
Oliver Schackow ◽  
Dieter Sicker ◽  
Lothar Hennig ◽  
...  

AbstractFor the characterization of BOA-OH insensitive plants, we studied the time-dependent effects of the benzoxazolinone-4/5/6/7-OH isomers on maize roots. Exposure of Zea mays seedlings to 0.5 mM BOA-OH elicits root zone-specific reactions by the formation of dark rings and spots in the zone of lateral roots, high catalase activity on root hairs, and no visible defense reaction at the root tip. We studied BOA-6-OH- short-term effects on membrane lipids and fatty acids in maize root tips in comparison to the benzoxazinone-free species Abutilon theophrasti Medik. Decreased contents of phosphatidylinositol in A. theophrasti and phosphatidylcholine in maize were found after 10–30 min. In the youngest tissue, α-linoleic acid (18:2), decreased considerably in both species and recovered within one hr. Disturbances in membrane phospholipid contents were balanced in both species within 30–60 min. Triacylglycerols (TAGs) were also affected, but levels of maize diacylglycerols (DAGs) were almost unchanged, suggesting a release of fatty acids for membrane lipid regeneration from TAGs while resulting DAGs are buildings blocks for phospholipid reconstitution, concomitant with BOA-6-OH glucosylation. Expression of superoxide dismutase (SOD2) and of ER-bound oleoyl desaturase (FAD2-2) genes were contemporaneously up regulated in contrast to the catalase CAT1, while CAT3 was arguably involved at a later stage of the detoxification process. Immuno-responses were not elicited in short-terms, since the expression of NPR1, POX12 were barely affected, PR4 after 6 h with BOA-4/7-OH and PR1 after 24 h with BOA-5/6-OH. The rapid membrane recovery, reactive oxygen species, and allelochemical detoxification may be characteristic for BOA-OH insensitive plants.


Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 276-281
Author(s):  
L. V. Ivanov ◽  
◽  
M. T. Kartel ◽  
O. V. Shcherbak ◽  
◽  
...  

Based on the analysis of the spectra, it has been found that compounds of flavonoid nature, binding to cell membranes, change not in all cases the fluidity of membrane lipids depending on the cell type. Obviously, vascular tissue cells are a kind of "target cells" for these substances, i.e. there is a selectivity of flavonoids to certain tissues of organs. A particularly noticeable increase in the lipid fluidity of membranes was observed due to the addition of flavonoid glycosides - hyperoside, stachanoaceside and liquiritin to segments of venous tissue, which correlated with the high affinity of these substances to liposomes. The addition to the vessels of the metabolite quercetin - chalcone also led to a sharp increase in the lipid fluidity of cells of arterial and venous tissue, what suggests the presence of biological activity in flavonoid metabolites. One of the mechanisms of increasing the resistance of arterial and venous vessels under the action of flavonoid substances is an increase in the lipid fluidity of cell membranes of these vessels, which reduces the fragility of blood vessels and increases their flexibility and elasticity. The apparent contradiction between the rapid metabolism of many flavonoids in animals and the prolonged pharmacological action can be explained by the capability of their metabolites, such as chalcone, to increase the lipid fluidity of vascular cell membranes, changing their resistance to external influences. Reducing the fragility of the pulmonary vessels and increasing their flexibility and elasticity can have a positive effect on a human body in the fight against coronavirus.


2021 ◽  
Author(s):  
Jeffrey B Rosa ◽  
Khaled Y Nassman ◽  
Alvaro Sagasti

Epithelial cell properties are determined by the polarized distribution of membrane lipids, the cytoskeleton, and adhesive junctions. Epithelia are often profusely innervated, but little work has addressed how contact with neurites affects the polarized organization of epithelial components. In previous work, we found that basal keratinocytes in the larval zebrafish epidermis wrap around axons to enclose them in ensheathment channels sealed by autotypic cell junctions. In this study, we used live imaging to characterize how sensory axons remodel cell membranes, the actin cytoskeleton, and adhesive junctions in basal keratinocytes. At the apical surface of basal keratinocytes, axons promoted the formation of lipid microdomains quantitatively enriched in reporters for PI(4,5)P2 and liquid-ordered (Lo) membranes. Lipid microdomains supported the formation of cadherin-enriched F-actin protrusions, which wrapped around axons, likely initiating the formation of ensheathment channels. Lo reporters, but not reporters of liquid-disordered (Ld) membranes, became progressively enriched at axon-associated membrane domains as autotypic junctions matured at ensheathment channels. In the absence of axons, cadherin-enriched lipid microdomains still formed on basal cell membranes, but were not organized into the contiguous domains normally associated with axons. Instead, these isolated domains formed ectopic heterotypic junctions with overlying periderm cells, a distinct epithelial cell type in the epidermis. Thus, axons inhibit the formation of epithelial heterotypic junctions by recruiting cadherin-rich lipid microdomains to form autotypic junctions at ensheathment channels. These findings demonstrate that sensory nerve endings dramatically remodel polarized epithelial components and regulate the adhesive properties of the epidermis.


Author(s):  
Kristyna Pluhackova ◽  
Florian M. Wilhelm ◽  
Daniel J. Müller

G protein-coupled receptors (GPCRs) are the largest class of human membrane proteins that bind extracellular ligands at their orthosteric binding pocket to transmit signals to the cell interior. Ligand binding evokes conformational changes in GPCRs that trigger the binding of intracellular interaction partners (G proteins, G protein kinases, and arrestins), which initiate diverse cellular responses. It has become increasingly evident that the preference of a GPCR for a certain intracellular interaction partner is modulated by a diverse range of factors, e.g., ligands or lipids embedding the transmembrane receptor. Here, by means of molecular dynamics simulations of the β2-adrenergic receptor and β-arrestin2, we study how membrane lipids and receptor phosphorylation regulate GPCR-arrestin complex conformation and dynamics. We find that phosphorylation drives the receptor’s intracellular loop 3 (ICL3) away from a native negatively charged membrane surface to interact with arrestin. If the receptor is embedded in a neutral membrane, the phosphorylated ICL3 attaches to the membrane surface, which widely opens the receptor core. This opening, which is similar to the opening in the G protein-bound state, weakens the binding of arrestin. The loss of binding specificity is manifested by shallower arrestin insertion into the receptor core and higher dynamics of the receptor-arrestin complex. Our results show that receptor phosphorylation and the local membrane composition cooperatively fine-tune GPCR-mediated signal transduction. Moreover, the results suggest that deeper understanding of complex GPCR regulation mechanisms is necessary to discover novel pathways of pharmacological intervention.


2021 ◽  
Vol 75 (12) ◽  
pp. 1026-1030
Author(s):  
Auxiliadora Aguilera-Romero ◽  
Manuel Muñiz

Lipid and protein diversity provides structural and functional identity to the membrane compartments that define the eukaryotic cell. This compositional heterogeneity is maintained by the secretory pathway, which feeds newly synthesized proteins and lipids to the endomembrane systems. The precise sorting of lipids and proteins through the pathway guarantees the achievement of their correct delivery. Although proteins have been shown to be key for sorting mechanisms, whether and how lipids contribute to this process is still an open discussion. Our laboratory, in collaboration with other groups, has recently addressed the long-postulated role of membrane lipids in protein sorting in the secretory pathway, by investigating in yeast how a special class of lipid-linked cell surface proteins are differentially exported from the endoplasmic reticulum. Here we comment on this interdisciplinary study that highlights the role of lipid diversity and the importance of protein-lipid interactions in sorting processes at the cell membrane.


2021 ◽  
Vol 75 (12) ◽  
pp. 1022-1025
Author(s):  
Dirk Trauner ◽  
Johannes Morstein

Glycerolipids, sphingolipids, and sterols are the three major classes of membrane lipids. Both glycerolipids and sphingolipids are comprised of combinations of polar headgroups and fatty acid tails. The fatty acid tail can be chemically modified with an azobenzene photoswitch giving rise to photoswitchable lipids. This approach has yielded a number of photopharmacological tools that allow for the control various of aspects of lipid assembly, metabolism, and physiology with light.


Sign in / Sign up

Export Citation Format

Share Document