Shape preserving rational cubic trigonometric fractal interpolation functions

Author(s):  
K.R. Tyada ◽  
A.K.B. Chand ◽  
M. Sajid
Fractals ◽  
2019 ◽  
Vol 27 (08) ◽  
pp. 1950141 ◽  
Author(s):  
S. K. KATIYAR ◽  
A. K. B. CHAND

The appearance of fractal interpolation function represents a revival of experimental mathematics, raised by computers and intensified by powerful evidence of its applications. This paper is devoted to establish a method to construct [Formula: see text]-fractal rational quartic spline, which eventually provides a unified approach for the generalization of various traditional nonrecursive rational splines involving shape parameters. We deduce the uniform error bound for the [Formula: see text]-fractal rational quartic spline when the original function is in [Formula: see text]. By solving a system of linear equations, appropriate values of the derivative parameters are determined so as to enhance the continuity of the [Formula: see text]-fractal rational quartic spline to [Formula: see text]. The elements of the iterated function system are identified befittingly so that the class of [Formula: see text]-fractal function [Formula: see text] incorporates the geometric features such as positivity, monotonicity and convexity in addition to the regularity inherent in the germ [Formula: see text]. This general theory in conjunction with shape preserving aspects of the traditional splines provides algorithms for the construction of shape preserving fractal interpolation functions.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
A. K. B. Chand ◽  
N. Vijender

Fractal interpolation is an advanced technique for analysis and synthesis of scientific and engineering data. We introduce the 𝒞1-rational quadratic fractal interpolation functions (FIFs) through a suitable rational quadratic iterated function system (IFS). The novel notion of shape preserving fractal interpolation without any shape parameter is introduced through the rational fractal interpolation model in the literature for the first time. For a prescribed set of monotonic data, we derive the sufficient conditions by restricting the scaling factors for shape preserving 𝒞1-rational quadratic FIFs. A local modification pertaining to any subinterval is possible in this model if the scaling factors are chosen appropriately. We establish the convergence results of a monotonic rational quadratic FIF to the original function in 𝒞4. For given data with derivatives at grids, our approach generates several monotonicity preserving rational quadratic FIFs, whereas this flexibility is not available in the classical approach. Finally, numerical experiments support the importance of the developed rational quadratic IFS scheme through construction of visually pleasing monotonic rational fractal curves including the classical one.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 767
Author(s):  
Alexandra Băicoianu ◽  
Cristina Maria Păcurar ◽  
Marius Păun

The present paper concretizes the models proposed by S. Ri and N. Secelean. S. Ri proposed the construction of the fractal interpolation function(FIF) considering finite systems consisting of Rakotch contractions, but produced no concretization of the model. N. Secelean considered countable systems of Banach contractions to produce the fractal interpolation function. Based on the abovementioned results, in this paper, we propose two different algorithms to produce the fractal interpolation functions both in the affine and non-affine cases. The theoretical context we were working in suppose a countable set of starting points and a countable system of Rakotch contractions. Due to the computational restrictions, the algorithms constructed in the applications have the weakness that they use a finite set of starting points and a finite system of Rakotch contractions. In this respect, the attractor obtained is a two-step approximation. The large number of points used in the computations and the graphical results lead us to the conclusion that the attractor obtained is a good approximation of the fractal interpolation function in both cases, affine and non-affine FIFs. In this way, we also provide a concretization of the scheme presented by C.M. Păcurar .


Fractals ◽  
2001 ◽  
Vol 09 (02) ◽  
pp. 165-169
Author(s):  
GANG CHEN ◽  
ZHIGANG FENG

By using fractal interpolation functions (FIF), a family of multiple wavelet packets is constructed in this paper. The first part of the paper deals with the equidistant fractal interpolation on interval [0, 1]; next, the proof that scaling functions ϕ1, ϕ2,…,ϕr constructed with FIF can generate a multiresolution analysis of L2(R) is shown; finally, the direct wavelet and wavelet packet decomposition in L2(R) are given.


Sign in / Sign up

Export Citation Format

Share Document