scholarly journals Chemical and morphological mechanisms of synthesizing rectangular cesium tungsten bronze nanosheets with broadened visible-light absorption and strong photoresponse property

2020 ◽  
Vol 194 ◽  
pp. 108955
Author(s):  
Guanghui Liu ◽  
Ju Xu ◽  
Ruixing Li
Author(s):  
David Maria Tobaldi ◽  
Luc Lajaunie ◽  
ana caetano ◽  
nejc rozman ◽  
Maria Paula Seabra ◽  
...  

<div>Titanium dioxide is by far the most utilised semiconductor material for photocatalytic applications. Still, it is transparent to visible-light. Recently, it has been proved that a type-II band alignment for the rutile−anatase mixture would improve its visible-light absorption.</div><div>In this research paper we thoroughly characterised the real crystalline and amorphous phases of synthesised titanias – thermally treated at different temperatures to get distinct ratios of anatase-rutile-amorphous fraction – as well as that of three commercially available photocatalytic nano-TiO2. </div><div>The structural characterisation was done via advanced X-ray diffraction method, namely the Rietveld-RIR method, to attain a full quantitative phase analysis of the specimens. The microstructure was also investigated via an advanced X-ray method, the whole powder pattern modelling. These methods were validated combining advanced aberration-corrected scanning transmission microscopy and high-resolution electron energy-loss spectroscopy. The photocatalytic activity was assessed in the liquid- and gas-solid phase (employing rhodamine B and 4-chlorophenol, and isopropanol, respectively, as the organic substances to degrade) using a light source irradiating exclusively in the visible-range.</div><div>Optical spectroscopy showed that even a small fraction of rutile (2 wt%) is able to shift to lower energies the apparent optical band gap of an anatase-rutile mixed phase. But is this enough to attain a real photocatalytic activity promoted by merely visible-light?</div><div>We tried to give a reply to that question.</div><div>Photocatalytic activity results in the liquid-solid phase showed that a high surface hydroxylation led to specimen with superior visible light-induced catalytic activity (i.e. dye and ligand-to-metal charge transfer complexes sensitisation effects). That is: not photocatalysis <i>sensu-strictu</i>.</div><div>On the other hand, the gas-solid phase results showed that a higher amount of the rutile fraction (around 10 wt%), together with less recombination of the charge carriers, were more effective for an actual photocatalytic oxidation of isopropanol.</div>


2019 ◽  
Vol 2 (10) ◽  
pp. 7518-7526 ◽  
Author(s):  
Hanggara Sudrajat ◽  
Mitsunori Kitta ◽  
Nobuyuki Ichikuni ◽  
Hiroshi Onishi

Author(s):  
Xin Zou ◽  
Xueyang Han ◽  
Chengxiong Wang ◽  
Yunkun Zhao ◽  
Chun Du ◽  
...  

Ta3N5 is regarded as a promising candidate material with adequate visible light absorption and band structure for photoelectrochemical water splitting. However, the performance of Ta3N5 is severely limited by the...


Author(s):  
Yalong Zou ◽  
Jiabo Le ◽  
Yufeng Cao ◽  
Na An ◽  
Yang Zhou ◽  
...  

The attractive photoelectrochemical (PEC) water splitting for hydrogen fuels always desires new semiconductors which provide stronger visible light absorption with suitable band positions. Sn(II) complex oxides are expected to offer...


RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 4935-4941
Author(s):  
Riza Ariyani Nur Khasanah ◽  
Hui-Ching Lin ◽  
Hsiang-Yun Ho ◽  
Yen-Ping Peng ◽  
Tsong-Shin Lim ◽  
...  

Cu2O/TNA/Ti photoanode showed spectral response outperformed Cu2O/Ti and Cu2O/FTO photocathodes. Cu2O/TNA/Ti showed better spectral response than that of TNA/Ti, ascribed to UV-visible light absorption of Cu2O, not to charge separation enhancement.


Sign in / Sign up

Export Citation Format

Share Document