Solar Water Distillation Using Different Phase Change Materials

2017 ◽  
Vol 4 (2) ◽  
pp. 314-321 ◽  
Author(s):  
Ravi Gugulothu ◽  
Naga Sarada Somanchi ◽  
G. Devendar ◽  
Pranavi Kaluriand Neeraja Deepika
2015 ◽  
Vol 2 (4-5) ◽  
pp. 1868-1875 ◽  
Author(s):  
Ravi Gugulothu ◽  
Naga Sarada Somanchi ◽  
Devender Vilasagarapu ◽  
Hima Bindu Banoth

Author(s):  
Sunita Routray ◽  
Vishal Agarwal ◽  
Ranjita Swain ◽  
Rudra Narayan Mohapatro

Abstract: Phase Change Materials (PCMs) are used in a latent heat storage system for storing thermal energy. The thermal conductivity of PCMs is enhanced by macro encapsulation for large-scale use. This technique not only provides a self-supporting structure of PCM, also separates the PCM from thermal fluids and enhances the heat transfer rate. The current work involves the study of encapsulation of low-cost inorganic PCMs, such as Sodium nitrate (NaNO3), in a temperature range of 300 – 500˚C. Silicate coating is also applied to PCM capsules. A Solar water heater is then designed using the macro encapsulated PCM. The water heater consists of copper cylindrical pipes, filled with the phase change material. The efficiency of the solar water heater is found to be 22.5%.


Author(s):  
Alexios Papadimitratos ◽  
Sarvenaz Sobhansarbandi ◽  
Vladimir Pozdin ◽  
Anvar Zakhidov ◽  
Fatemeh Hassanipour

This paper presents a novel method of integrating Phase Change Materials (PCMs) and Silicone oil within the Evacuated solar Tube Collectors (ETCs) for application in Solar Water Heaters (SWHs). In this method, heat pipe is immersed inside the phase change material, where heat is effectively accumulated and stored for an extended period of time due to thermal insulation of evacuated tubes. The proposed solar collector utilizes two distinct phase change materials (dual-PCM), namely Tritriacontane paraffin and Erythritol, with melting temperature 72°C and 118°C respectively. The integration of Silicone oil for uniform melting of the PCMs, utilizes the convective heat transfer inside the evacuated tubes, as this liquid polymerized material is well known for its temperature-stability and an excellent heat transfer medium. The operation of solar water heater with the proposed solar collector is investigated during both normal and stagnation (on-demand) operation. The feasibility of this technology is tested via small scale and large scale commercial solar water heaters. Beyond the improved functionality for solar water heater systems, the results from this study show show efficiency improvement of 26% for the normal operation and 66% for the stagnation mode compared with standard solar water heaters that lack phase change materials and silicone oil. The benefit of this method includes improved functionality by delayed release of heat, thus providing hot water during the hours of high demand or when solar intensity is insufficient such in a cloudy day and during night time.


Author(s):  
Shailendra Singh ◽  
Abhishek Anand ◽  
Amritanshu Shukla ◽  
Atul Sharma

Author(s):  
D. Vikram ◽  
S. Kaushik ◽  
V. Prashanth ◽  
N. Nallusamy

The present work has been undertaken to study the feasibility of storing solar energy using phase change materials (like paraffin) and utilizing this energy to heat water for domestic purposes during nighttime. This ensures that hot water is available through out the day. The system consists of two simultaneously functioning heat-absorbing units. One of them is a solar water heater and the other a heat storage unit consisting of Phase Change Material (PCM). The water heater functions normally and supplies hot water during the day. The storage unit stores the heat in PCMs during the day and supplies hot water during the night. The storage unit utilizes small cylinders made of aluminium, filled with paraffin wax as the heat storage medium and integrated with a Solar Collector to absorb solar heat. At the start of the day the storage unit is filled with water completely. This water is made to circulate between the solar collector and the PCM cylinders. The water in the storage tank receives heat form the solar collector and transfers it to the PCM. The PCM undergoes a phase change by absorbing latent heat, excess heat being stored as sensible heat. The water supply in the night is routed to the storage unit using a suitable control device. The heat is recovered from the unit by passing water at room temp through it. As water is drawn from the overhead tank, fresh water enters the unit disturbing the thermal equilibrium, causing flow of heat from PCM to the water. The temperature of the heated water (outlet) is varied by changing the flow rate, which is measured by a flow meter. The storage tank is completely insulated to prevent loss of heat. The performance of the present setup is compared with that of a system using same PCM encapsulated in High Density PolyEthylene (HDPE) spherical shells.


Sign in / Sign up

Export Citation Format

Share Document