Investigation on spark electrical discharge machining of Si3N4 based advanced conductive ceramic composites

2020 ◽  
Vol 27 ◽  
pp. 2174-2178 ◽  
Author(s):  
L. Selvarajan ◽  
R. Rajavel ◽  
B. Prakash ◽  
Dhanesh G. Mohan ◽  
S. Gopi
2005 ◽  
Vol 475-479 ◽  
pp. 1337-1340
Author(s):  
Chien Cheng Liu ◽  
Jow Lay Huang

Conductive TiN/Si3N4 ceramic composites were processed by electrical discharge machining (EDM) and their microstructure and conductivity investigated. A low electrical resistivity of 1.25×10-3Ω.cm was obtained in 40vol%TiN/Si3N4 composite. The whole process of tool electrode wear is evaluated by sinker-EDM. The machined surfaces of TiN/Si3N4 ceramic composites were examined by scanning electron microscopy (SEM) and profilometry to determine the surface finish. Micropores of 700µm in depth and 70µm in diameter were successfully machined in TiN/ Si3N4 composites by the micro-EDM method.


2021 ◽  
Vol 11 (2) ◽  
pp. 657
Author(s):  
Sergey Grigoriev ◽  
Yuri Pristinskiy ◽  
Marina Volosova ◽  
Sergey Fedorov ◽  
Anna Okunkova ◽  
...  

An effective approach for preparing electrically conductive multiscale SiAlON-based nanocomposites with 10 wt.% and 20 wt.% of titanium nitride was developed. Fully dense samples were obtained by spark plasma sintering (SPS) at 1700 °C and 80 MPa for 30 min. The morphology of nanocomposites was observed using scanning electron microscopy and the effects of TiN particles on the mechanical properties and electrical resistivity were studied. It was found that the addition of 20 wt.% TiN increased the hardness and fracture toughness compared to the commercial ceramic analogue TC3030. Meanwhile, the presence of TiN particles reduced the flexural strength of the nanocomposites due to the shrinkage difference between TiN particles and ceramic matrix during cooling, which led to tensile residual stresses and, consequently, to changes in strength values. In addition, the electrical resistivity of nanocomposites decreased with the increase of TiN content and reached 1.6 × 10−4 Ω∙m for 20 wt.% amount of second phase, which consequently made them suitable for electrical discharge machining. In addition to enhanced mechanical and electrical properties, under identical conditions, SPS-sintered multiscale nanocomposites exhibited a higher wear resistance (more than about 1.5-times) compared to the commercial sample due to their higher toughness and hardness.


Author(s):  
Bruna Michelle de Freitas ◽  
Carlos augusto Henning Laurindo ◽  
Paulo Soares ◽  
Leticia Bemben

2020 ◽  
Vol 40 (10) ◽  
pp. 870-872
Author(s):  
T. R. Ablyaz ◽  
E. S. Shlykov ◽  
K. R. Muratov

Sign in / Sign up

Export Citation Format

Share Document