Optimization of initial blank shape for flexible micro deep drawing of square parts

2020 ◽  
Vol 20 ◽  
pp. 555-559
Author(s):  
Zaid H. Mahmood ◽  
Ihsan K. Irthiea ◽  
Ahmed K. Ahmed
2013 ◽  
Vol 371 ◽  
pp. 178-182
Author(s):  
Viorel Paunoiu ◽  
Virgil Teodor

One of the methods for increasing the degree of deformation in the deep drawing of the cylindrical parts is the method with the combined restraint. In this process, due to the high degree of deformation, the earing is pronounced and affects the quality of the final part. The paper focuses in optimization the blank shape in this process applying a method which combines a mathematical relation with the results of the numerical simulation. The mathematical relation connects the radii of the initial blank at the different angles with the sizes of the part heights at different angles. The numerical simulation using FEM was used for the heights determination at the main anisotropy directions considering different initial blank dimensions. An experimental work was done for certify the numerical results. The results confirmed that the optimization of the blank shape in deep drawing with the combined restraint is a key for improving the deformation process, for reduction the earing and for minimizing the material consumption.


2013 ◽  
Vol 652-654 ◽  
pp. 1971-1975
Author(s):  
Pan Liu ◽  
Tae Wan Ku ◽  
Beom Soo Kang

Multi-stage deep drawing process for rectangular cups with extreme aspect ratio using finite element analysis is performed. The process is mainly consists of four forming stages including blanking, drawing, ironing and trimming. However, main deformation of the rectangular cup is completed during the drawing-ironing procedure. Tool design and blank modification for the multi-stage deep drawing process are presented. To consider the deep drawing and the ironing operations, the multi-stage deep drawing process is applied to obtain the rectangular cup by using each numerical simulation models from first to fifth drawing. Based on the design results of the initial blank, the multi-stage deep drawing process is performed, but it is shown that severe earing phenomenon is occurred at the upper flange part. To solve the severe deformation at the upper flange due to normal anisotropy of the used sheet material, initial blank modification is carried out. The simulation results for the rectangular cup are compared with the final configuration before and after the modification of the blank shape. The predicted result is confirmed that the modified blank shape not only improve the quality of a deep-drawn product but also reduce the cost of production.


2014 ◽  
Vol 2014.51 (0) ◽  
pp. _1318-1_-_1318-2_
Author(s):  
Marina SAIKYO ◽  
Satoshi KITAYAMA

Author(s):  
M. R. Morovvati ◽  
B. Mollaei-Dariani ◽  
M. Haddadzadeh

The initial blank in the deep drawing process has a simple shape. After drawing, its perimeter shape becomes very complex. If the initial blank shape is designed in such a way that it is formed into the desired shape after the drawing process, not only does it reduces the time of trimming process but it also decreases the raw material needed substantially. In this paper, the genetically optimized neural network system (GONNS) is proposed as a tool to predict the initial blank shape for the desired final shape. Artificial neural networks (ANNs) represent the final blank shape after a training process and genetic algorithms find the optimum initial blank. The finite element method is employed for simulating the multilayer plate deep drawing process to provide training data for ANN. The GONNS results were verified through experiment in which the error was found to be about 0.2 mm. At last, variations of deformation force, thickness distribution, and thickness strain distribution were investigated using optimum blank. The results show 12% reduction in deformation force and more uniform thickness distribution as well as more consistent thickness strain distribution in the optimum blank shape.


Sign in / Sign up

Export Citation Format

Share Document