deep drawing process
Recently Published Documents


TOTAL DOCUMENTS

514
(FIVE YEARS 91)

H-INDEX

28
(FIVE YEARS 3)

Author(s):  
RB Jivan ◽  
M Eskandarzade ◽  
SR Bewsher ◽  
M Leighton ◽  
M Mohammadpour ◽  
...  

Manufacturing processes are usually energy intensive, contributing to the global carbon dioxide emissions. Deep Drawing is one of the most common types of sheet metal forming processes with great potential for energy efficiency improvement. In this paper, the optimised combination of molybdenum disulphide (MoS2) and graphite is proposed as a solid lubricant to reduce the punching force and energy consumption of deep drawing process. Different mixtures of MoS2 and graphite are prepared and their tribological performance are measured using experimental tests on tribometer. In order to investigate the friction reduction rate in deep drawing process, finite element simulation of the drawing process is performed. Results show that friction reduction using proposed combination of lubricants has significant effect on punching force and would provide greater process efficiency.


Author(s):  
Seyed Hassan Alavi Hashemi ◽  
Seyed Mohammad Hossein Seyedkashi

In the deep drawing process, achieving a higher drawing ratio has always been considered by researchers. In this study, a new concept of hydrodynamic deep drawing with two consecutive stages without additional operations such as annealing is proposed to increase the limit drawing ratio of the cups. The effective parameters were investigated numerically and experimentally in the forming of Al1200 cylindrical cups. At first, the desired value of punch diameter ratio was determined based on finite element simulation results and was utilized to increase the cup formability. Next, the effects of pressure paths on the cup thickness, separation, and rupture were studied in each forming stage. The cup formability was investigated based on a new proposed framework to obtain the maximum possible limiting drawing ratio, and the desired conditions were determined. Finally, a cup was formed with a high drawing ratio of 3.4 which was a good achievement in comparison with the literature.


Author(s):  
Hamidreza Gharehchahi ◽  
Mohammad-Javad Kazemzadeh-Parsi ◽  
Ahmad Afsari ◽  
Mehrdad Mohammadi

2021 ◽  
Vol 11 (19) ◽  
pp. 9235
Author(s):  
Hussein Zein ◽  
Osama M. Irfan

Deep drawing is characterized by extremely complex deformation that is influenced by process characteristics such as die and punch shapes, blank shape, blank holding force, material properties, and lubrication. The optimization of the deep drawing process is a challenging issue due to the complicated functions that define and relate the process parameters. However, the optimization is essential to enhance the productivity and the product cost in the deep drawing process. In this paper, a MATLAB toolbox (Pattern Search) was employed to minimize the maximum deep drawing force (Fd-min) at different values of the operating and the geometrical parameters. As a result, a minimum deep drawing force chart (carpet plot) was generated to show the best combination of friction coefficients at the blank contact interfaces. The extracted friction coefficients guided the selection of proper lubricants while minimizing the deep drawing force. A finite element analysis (FEA) was applied through 3D model to simulate the deep drawing process. The material modeling was implemented utilizing the ABAQUS/EXPLICIT program with plastic anisotropy. The optimization results showed that the deep drawing force and the wrinkling decrease when compared with experimental and numerical results from the literature.


2021 ◽  
pp. 1-31
Author(s):  
DineshKumar Karupannasamy ◽  
V.Kailas Satish ◽  
S. Shankar ◽  
Sasikumar KSK

Abstract Galling is a recurring phenomenon in deep drawing processes which requires frequent maintenance of tools to improve the product surface quality. Adhesive transfer of softer material on the hard tool surface results in sharp features which causes surface roughening of the dies and deterioration of deep drawn products. In this article, an adhesive wear model based on deterministic approach is developed to predict the galling behavior in a deep drawing process. The model uses the surface topography, material properties and contact conditions to predict the surface roughening of tool surfaces under perfectly plastic conditions. The adhesive transfer of material is considered by the growth of the asperities based on its geometry for the increase in height and radial direction by preserving the original shape and volume consistency. The results of the multi-asperity models shows the growth of transfer layer and its effects due to load, sliding cycle, sliding distance and affinity of the materials. The results shows the influence of the above-said parameters and its applicability for deep drawing process conditions. The simulated results shows an 85% level of confidence in comparison with the experiments from literature for the prediction of the surface evolution due to galling mechanism.


Sign in / Sign up

Export Citation Format

Share Document