Study the performance about the implementation of variable speed constant frequency Aircraft Electrical Power System

2020 ◽  
Vol 33 ◽  
pp. 2970-2976
Author(s):  
S. Sathyamoorthi ◽  
S. Selvaperumal
2015 ◽  
Vol 66 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Elvisa Bećirović ◽  
Jakub Osmić ◽  
Mirza Kušljugić ◽  
Nedjeljko Perić

Abstract Model Reference Controller (MRC) for contribution of Variable Speed Wind Generators (VSWG) in inertial response of Electrical Power System (EPS) is presented and analyzed in this paper. MRC is synthesized based on a model of Generating Unit With non-Reheat Steam Turbine (GUNRST) thus enabling VSWG to emulate GUNRST response during the initial stage of dynamic frequency response ie inertial phase. Very important property of conventional steam generating units is that its contribution to inertial phase response is independent from the initial generating power. By using MRC in VSWG it is accomplished that in most common wind speed region (3-12 m/s) VSWG inertial support is almost independent from wind speed. Since in most EPSs VSWG replaces conventional steam generators, application of MRC algorithm provides that the characteristics of EPS in terms of inertial response are preserved, regardless of the growing trend of introducing VSWG. Evaluation analysis of the proposed MRC is performed on modified nine bus power system when VSWG with MRC is connected to one of the power system buses.


2017 ◽  
Vol 11 (1) ◽  
pp. 87-98 ◽  
Author(s):  
Kelu Xu ◽  
Ning Xie ◽  
Chengmin Wang ◽  
Xudong Shi

The More Electric Aircraft (MEA), Variable Speed Variable Frequency (VSVF) and Electrical Power System (EPS) has lager generating capacity and higher energy efficiency than the conventional Constant Speed Constant Frequency EPS, but the generators of MEA have to working as redundant power supplies to improve the power supply reliability, instead of parallel power supply. To study the steady state operation and power source change strategies under different fault conditions of VSVF EPS, the integrated structure of VSVF EPS is firstly illustrated and operating principles of components are theorized. The key components including variable frequency generators, Bus Power Control Unit, rectifiers and other supplementary elements are then simulated to build a comprehensive VSVF EPS model on the platform of Simulink and the power source change strategies are realized by logic units. Finally, the stability analysis in terms of normal operation is carried out in case studies and power source exchange strategies in different situations are summarized. The results show that the model proposed by the paper can be used to simulate MEA VSVF EPS and analyze its whole operational process effectively and efficiently.


Sign in / Sign up

Export Citation Format

Share Document