Experimental investigation on magnetorheological finishing process parameters

Author(s):  
Abdul Wahab Hashmi ◽  
Harlal Singh Mali ◽  
Anoj Meena ◽  
Irshad Ahamad Khilji ◽  
Chaitanya Reddy Chilakamarry ◽  
...  
Author(s):  
S. Sudharsan

Lapping is a finishing process used especially for removing the material, achieving finer surfaces, correcting minor imperfections and maintaining close tolerances. This process may takes place due to the relative motion between the work material, slurry and lapping plate. This study is done by conducting a series of experiments based on taguchi design of experiments and calculating material removal rate and surface roughness. This study explains about effect of the parameters on material removal rate and surface finish. The final step of this process is to find out the optimum combination of process parameters to determine the material removal rate and the surface finish.


Optik ◽  
2021 ◽  
Vol 226 ◽  
pp. 165908
Author(s):  
Mahender Kumar Gupta ◽  
D Dinakar ◽  
Inder Mohan Chhabra ◽  
Sunil Jha ◽  
Buchi Suresh Madireddy

Author(s):  
Mayank Srivastava ◽  
Pulak M Pandey

In the present work, a novel hybrid finishing process that combines the two preferred methods in industries, namely, chemical-mechanical polishing (CMP) and magneto-rheological finishing (MRF), has been used to polish monocrystalline silicon wafers. The experiments were carried out on an indigenously developed double-disc chemical assisted magnetorheological finishing (DDCAMRF) experimental setup. The central composite design (CCD) was used to plan the experiments in order to estimate the effect of various process factors, namely polishing speed, slurry flow rate, percentage CIP concentration, and working gap on the surface roughness ([Formula: see text]) by DDCAMRF process. The analysis of variance was carried out to determine and analyze the contribution of significant factors affecting the surface roughness of polished silicon wafer. The statistical investigation revealed that percentage CIP concentration with a contribution of 30.6% has the maximum influence on the process performance followed by working gap (21.4%), slurry flow rate (14.4%), and polishing speed (1.65%). The surface roughness of polished silicon wafers was measured by the 3 D optical profilometer. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were carried out to understand the surface morphology of polished silicon wafer. It was found that the surface roughness of silicon wafer improved with the increase in polishing speed and slurry flow rate, whereas it was deteriorated with the increase in percentage CIP concentration and working gap.


Sign in / Sign up

Export Citation Format

Share Document