laser cutting
Recently Published Documents


TOTAL DOCUMENTS

2141
(FIVE YEARS 423)

H-INDEX

48
(FIVE YEARS 9)

2022 ◽  
Vol 147 ◽  
pp. 107547
Author(s):  
Hitoshi Ozaki ◽  
Yoshihito Akao ◽  
Minh Quang Le ◽  
Hiroshi Kawakami ◽  
Jippei Suzuki ◽  
...  

2022 ◽  
Vol 149 ◽  
pp. 107847
Author(s):  
Muhamad Nur Rohman ◽  
Jeng-Rong Ho ◽  
Pi-Cheng Tung ◽  
Hai-Ping Tsui ◽  
Chih-Kuang Lin

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Youngjin Seo ◽  
Dongkyoung Lee ◽  
Sukhoon Pyo

AbstractLaser cutting of intrusive rocks, including granite, gabbro, and diorite, is carried out in order to assess the cut characteristics through geometrical measurements, such as kerf width, melting width, and penetration depth. The absorption rate for each specimen at the wavelength of 1064 nm is measured using a spectrophotometer. A multimode fiber laser is used in this study with the power of 9 kW and different cutting speeds. Furthermore, nitrogen gas at 13 bar is applied as the assistant gas in order to remove the melted material effectively. As a result of the experiment, the relationship between the cutting speed and geometrical measurements is investigated. Furthermore, variations of penetration depth are performed in accordance with the number of laser cuts. In addition, through energy dispersive X-ray (EDX) element mapping, minerals that comprise the rocks are classified and characterized. Subsequently, the changes in the microstructure and chemical composition of each specimen, before and after laser cutting, are compared using scanning electron microscope (SEM) and EDX analyses. Experimental results demonstrate that the cutting characteristics vary, depending on the types of minerals that make up the rock. Based on a series of tests, it is identified that volume energy of more than 3.06E + 13 $$\mathrm{J}/{\mathrm{m}}^{3}$$ J / m 3 is required to fully cut intrusive rocks that have a thickness of 25 mm.


2022 ◽  
Vol 12 (1) ◽  
pp. 495
Author(s):  
Kwan Kim ◽  
Moo-Keun Song ◽  
Su-Jin Lee ◽  
Dongsig Shin ◽  
Jeong Suh ◽  
...  

With nuclear power plants worldwide approaching their design lifespans, plans for decommissioning nuclear power plants are increasing, and interest in decommissioning technology is growing. Laser cutting, which is suitable for high-speed cutting in underwater environments and is amenable to remote control and automation, has attracted considerable interest. In this study, the effects of laser cutting were analyzed with respect to relevant parameters to achieve high-quality underwater laser cutting for the decommissioning of nuclear power plants. The kerf width, drag line, and roughness of the specimens during the high-power laser cutting of 50 mm-thick stainless steel in an underwater environment were analyzed based on key parameters (focal position, laser power, and cutting speed) to determine the conditions for satisfactory cutting surface quality. The results indicated that underwater laser cutting with a speed of up to 130 mm/min was possible at a focal position of 30 mm and a laser power of 9 kW; however, the best-quality cutting surface was obtained at a cutting speed of 30 mm/min.


2022 ◽  
Vol 121 ◽  
pp. 108786
Author(s):  
Mikhail Popov ◽  
Maria Bondarenko ◽  
Boris Kulnitskiy ◽  
Sergey Zholudev ◽  
Vladimir Blank ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document