Influence of sodium bicarbonate treatment on the free vibration characteristics of Phoenix sp. fiber loaded polyester composites

Author(s):  
G. Rajeshkumar ◽  
M.R. Sanjay ◽  
Suchart Siengchin ◽  
V. Hariharan
2018 ◽  
Vol 16 (1) ◽  
pp. 944-948 ◽  
Author(s):  
Sinan Maraş ◽  
Mustafa Yaman ◽  
Mehmet Fatih Şansveren ◽  
Sina Karimpour Reyhan

AbstractIn recent years, studies on the development of new and advanced composite materials have been increasing. Among these new technological products, Fiber Metal Laminates (FML), and hybrid structures made of aluminium, carbon, glass or aramid fiber, are preferred especially in the aircraft industry due to their high performance. Therefore, free vibration analysis is necessary for the design process of such structures. In this study, the vibration characteristics of FML for clamped-free boundary conditions were investigated experimentally and numerically. Firstly, numerical results were obtained using Finite Element Method (FEM) and then these results were compared with the experimental results. It was seen that the numerical results were in good agreement with the experimental results. As the theoretical model was justified, the effects of various parameters such as number of layers, fiber orientations, and aluminium layer thickness on the in-plane vibration characteristics of the FML straight beam were analysed using FEM. Thus, most important parameters affecting the vibration characteristics of the hybrid structures were determined.


1981 ◽  
Vol 48 (1) ◽  
pp. 169-173 ◽  
Author(s):  
S. Narayanan ◽  
J. P. Verma ◽  
A. K. Mallik

Free-vibration characteristics of a thin-walled, open cross-section beam, with unconstrained damping layers at the flanges, are investigated. Both uncoupled transverse vibration and the coupled bending-torsion oscillations, of a beam of a top-hat section, are considered. Numerical results are presented for natural frequencies and modal loss factors of simply supported and clamped-clamped beams.


Sign in / Sign up

Export Citation Format

Share Document