Linear static progressive collapse analysis of RC structures

Author(s):  
Soujanya Thumu ◽  
Srinivas Chava ◽  
Prathyusha V.
Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 405
Author(s):  
Andrey Nikolaevich Dmitriev ◽  
Vladimir Vladimirovich Lalin

Progressive collapse is the failure of the whole structure caused by local damage, which leads to significant economic and human losses. Therefore, structures should be designed to sustain local failures and resist subsequent nonproportional damage. This paper compared four procedures for a progressive collapse analysis of two RC structures subjected to a corner column loss scenario. The study is mainly based on the methods outlined in the current Russian standard (linear static (LS) pulldown, nonlinear static (ND) pulldown, and nonlinear dynamic), but also includes LS and NS pushdown procedures suggested by the American guidelines and linear dynamic procedure. We developed detailed finite element models for ANSYS Mechanical and ANSYS/LS-DYNA simulations, explicitly including concrete and reinforcement elements. We applied the Continuous Surface Cap Model (MAT_CSCM) to account for the physical nonlinearity of concrete. We also validated results obtained following these procedures against known experimental data. Simulations using linear static pulldown and linear dynamic procedures lead to 50–70% lower results than the experimental because they do not account for the nonlinear behavior of concrete and reinforcement. Displacements obtained from the NS pulldown method exceed the test data by 10–400%. It is found that correct results for both RC structures can only be found using a nonlinear dynamic procedure, and the mismatch with the test data do not exceed 7%. Compared to static pulldown methods, LS and NS pushdown methods are more accurate and differ from the experiment by 28% and 14%, respectively. This relative accuracy is provided by more correct load multipliers depending on the structure type.


2011 ◽  
Vol 33 (10) ◽  
pp. 2805-2820 ◽  
Author(s):  
B. Santafé Iribarren ◽  
P. Berke ◽  
Ph. Bouillard ◽  
J. Vantomme ◽  
T.J. Massart

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 2166-2176
Author(s):  
Hao Zhou ◽  
Youbao Jiang ◽  
Sondipon Adhikari ◽  
Qianqian Yin ◽  
Jianguo Cai

1992 ◽  
Vol 114 (1) ◽  
pp. 1-8
Author(s):  
T. C. Thuestad ◽  
F. G. Nielsen

The Oseberg jacket was installed at the Oseberg field in the North Sea during the summer of 1987 and the production started on December 1, 1988. On March 6, 1988, a submarine accidentally impacted with the Oseberg jacket. This paper presents results from the evaluation of the importance of the damage to the overall structural safety. A nonlinear progressive collapse analysis is applied for the safety check. The theoretical computations are verified through evaluation of strain and acceleration time series recorded during the submarine impact. The reduction in the overall structural capacity of the jacket was in the order of 10 percent. However, the local member capacity was significantly reduced and it was necessary to remove the damaged member in order to obtain the initial level of safety.


Sign in / Sign up

Export Citation Format

Share Document