progressive collapse analysis
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 61)

H-INDEX

25
(FIVE YEARS 5)

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 2166-2176
Author(s):  
Hao Zhou ◽  
Youbao Jiang ◽  
Sondipon Adhikari ◽  
Qianqian Yin ◽  
Jianguo Cai

Author(s):  
Yanchao Shi ◽  
Ren Jiang ◽  
Zhong-Xian Li ◽  
Yang Ding

The macromodel, by which the beam and column are simulated by fiber beam elements, has been extensively used in the progressive collapse analysis of reinforced concrete (RC) frames due to its high computing efficiency as compared to the solid element model. However, there exist some problems that need to be solved to improve the accuracy of the macromodel. One typical issue is to develop an accurate beam-column joint model. In current practice, the beam-column joint is as part of the rectangular frame with rigid elements, neglecting the shear damage and bending moment distribution in the core region of the joint, although they are crucial to progressive collapse analysis. In this paper, a new macromodel that considers the shear damage and bending moment distribution in the core region of the beam-column joint is developed for the progressive collapse analysis of RC frame structures under blast loads. Nonlinear springs are used in the joint connection interfaces to consider the force transfers from the beams or columns to the joint. Also, nonlinear shear springs are used in the core region of the joint, whose characteristics are derived based on the actual force-deformation relationship of the sub-assemblage due to joint shear distortion, to model the shear damage of the joint under blast loading. The proposed beam-column joint macromodel is validated with the available test data in the literature. The results indicated that the proposed macromodel for beam-column joints is more accurate than the traditional beam-column joint macromodel, while the computing efficiency remains almost unchanged in progressive collapse analysis of RC structures, especially when the RC frame structures are seriously damaged or collapse under blast loadings.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 405
Author(s):  
Andrey Nikolaevich Dmitriev ◽  
Vladimir Vladimirovich Lalin

Progressive collapse is the failure of the whole structure caused by local damage, which leads to significant economic and human losses. Therefore, structures should be designed to sustain local failures and resist subsequent nonproportional damage. This paper compared four procedures for a progressive collapse analysis of two RC structures subjected to a corner column loss scenario. The study is mainly based on the methods outlined in the current Russian standard (linear static (LS) pulldown, nonlinear static (ND) pulldown, and nonlinear dynamic), but also includes LS and NS pushdown procedures suggested by the American guidelines and linear dynamic procedure. We developed detailed finite element models for ANSYS Mechanical and ANSYS/LS-DYNA simulations, explicitly including concrete and reinforcement elements. We applied the Continuous Surface Cap Model (MAT_CSCM) to account for the physical nonlinearity of concrete. We also validated results obtained following these procedures against known experimental data. Simulations using linear static pulldown and linear dynamic procedures lead to 50–70% lower results than the experimental because they do not account for the nonlinear behavior of concrete and reinforcement. Displacements obtained from the NS pulldown method exceed the test data by 10–400%. It is found that correct results for both RC structures can only be found using a nonlinear dynamic procedure, and the mismatch with the test data do not exceed 7%. Compared to static pulldown methods, LS and NS pushdown methods are more accurate and differ from the experiment by 28% and 14%, respectively. This relative accuracy is provided by more correct load multipliers depending on the structure type.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5135
Author(s):  
Sheng-En Fang ◽  
Chen Wu ◽  
Xiao-Hua Zhang ◽  
Li-Sen Zhang ◽  
Zhi-Bin Wang ◽  
...  

Theoretical or numerical progressive collapse analysis is necessary for important civil structures in case of unforeseen accidents. However, currently, most analytical research is carried out under the assumption of material elasticity for problem simplification, leading to the deviation of analysis results from actual situations. On this account, a progressive collapse analysis procedure for truss structures is proposed, based on the assumption of elastoplastic materials. A plastic importance coefficient was defined to express the importance of truss members in the entire system. The plastic deformations of members were involved in the construction of local and global stiffness matrices. The conceptual removal of a member was adopted, and the impact of the member loss on the truss system was quantified by bearing capacity coefficients, which were subsequently used to calculate the plastic importance coefficients. The member failure occurred when its bearing capacity arrived at the ultimate value, instead of the elastic limit. The extra bearing capacity was embodied by additional virtual loads. The progressive collapse analysis was performed by iterations until the truss became a geometrically unstable system. After that, the critical progressive collapse path inside the truss system was found according to the failure sequence of the members. Lastly, the proposed method was verified against both analytical and experimental truss structures. The critical progressive collapse path of the experimental truss was found by the failure sequence of damaged members. The experimental observation agreed well with the corresponding analytical scenario, proving the method feasibility.


Sign in / Sign up

Export Citation Format

Share Document