Experimental investigations of WEDM process parameters for magnesium alloy AZ31B biomedical material

Author(s):  
Sunny Dayal ◽  
Rahul Dev Gupta ◽  
Sameer Sharma ◽  
Neeraj Sharma ◽  
Rajesh Khanna
Author(s):  
A. Muniappan ◽  
Mantri Sriram ◽  
C. Thiagarajan ◽  
G. Bharathi Raja ◽  
T. Shaafi

Author(s):  
Thomas Robinson ◽  
Malcolm Williams ◽  
Harish Rao ◽  
Ryan P. Kinser ◽  
Paul Allison ◽  
...  

Abstract In recent years, additive manufacturing (AM) has gained prominence in rapid prototyping and production of structural components with complex geometries. Magnesium alloys, whose strength-to-weight ratio is superior compared to steel and aluminum alloys, have shown potential in lightweighting applications. However, commercial beam-based AM technologies have limited success with magnesium alloys due to vaporization and hot cracking. Therefore, as an alternative approach, we propose the use of a near net-shape solid-state additive manufacturing process, Additive Friction Stir Deposition (AFSD), to fabricate magnesium alloys in bulk. In this study, a parametric investigation was performed to quantify the effect of process parameters on AFSD build quality including volumetric defects and surface quality in magnesium alloy AZ31B. In order to understand the effect of the AFSD process on structural integrity in the magnesium alloy AZ31B, in-depth microstructure and mechanical property characterization was conducted on a bulk AFSD build fabricated with a set of acceptable process parameters. Results of the microstructure analysis of the as-deposited AFSD build revealed bulk microstructure similar to wrought magnesium alloy AZ31 plate. Additionally, similar hardness measurements were found in AFSD build compared to control wrought specimens. While tensile test results of the as-deposited AFSD build exhibited a 20 percent drop in yield strength, nearly identical ultimate strength was observed compared to the wrought control. The experimental results of this study illustrate the potential of using the AFSD process to additively manufacture Mg alloys for load bearing structural components with achieving wrought-like microstructure and mechanical properties.


Author(s):  
A. H. Ammouri ◽  
A. H. Kheireddine ◽  
G. T. Kridli ◽  
R. F. Hamade

Controlling the temperature in friction stir processing (FSP) of Magnesium alloy AZ31b is crucial given its low melting point and surface deformability. A numerical FEM study is presented in this paper where a thermo-mechanical-based model is used for optimizing the process parameters, including active in-process cooling, in FSP. This model is simulated using a solid mechanics FEM solver capable of analyzing the three dimensional flow and of estimating the state variables associated with materials processing. Such processing (input) parameters of the FSP as spindle rotational speed, travel speed, and cooling rate are optimized to minimize the heat affected zone, while maintaining reasonable travel speeds and producing uniformity of the desired grain size distribution of the microstructure in the stirred zone. The simulation results predict that such optimized parameters will result in submicron grain sized structure in the stirred zone and at the corresponding stirred surface. These simulation predictions were verified using published experimental data.


Author(s):  
M. M. Mubasyir ◽  
◽  
M. F. Abdullah ◽  
K. Z. Ku Ahmad ◽  
R. N. R. Othman ◽  
...  

2021 ◽  
pp. 251659842110157
Author(s):  
Chinu Kumari ◽  
Sanjay Kumar Chak

Magneto-rheological abrasive honing (MRAH) is an unconventional surface finishing technique that relies on abrasives mixed with a unique finishing fluid, which changes its characteristics on magnetic field application. This process imparts nanometric-level surface finish with a significant amount of uniformity. Rotating motion of the workpiece and continuous reciprocation of the finishing fluid in the MRAH process are recognized as the major aspects for adopting this process in finishing non-magnetic materials. The finishing obtained through the MRAH process relies on the workpiece’s material properties and process parameters such as concentration of abrasives in finishing fluid, rotational speed of the workpiece, and magnetic field strength/magnetizing current. To study the efficacy of MRAH process, a parametric study was conducted by performing few experiments on a brass workpiece. Design of experiment approach was adopted to plan the experiments, and the effect of different values of magnetizing current, the concentration of abrasives, and rotational speed on the surface finish were analyzed through the application of analysis of variance (ANOVA). From ANOVA, the rotational speed was found as the most significant parameter with a contribution of 48.90% on % reduction in roughness value (%∇Ra). Around 57% of roughness reduction was obtained at the optimized value of process parameters.


Sign in / Sign up

Export Citation Format

Share Document