magnesium alloys
Recently Published Documents


TOTAL DOCUMENTS

4735
(FIVE YEARS 761)

H-INDEX

118
(FIVE YEARS 17)

2022 ◽  
Vol 142 ◽  
pp. 107465
Author(s):  
L. Peng ◽  
G. Zeng ◽  
J. Xian ◽  
C.M. Gourlay

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 567
Author(s):  
Mikhail Linderov ◽  
Alexander Brilevsky ◽  
Dmitry Merson ◽  
Alexei Danyuk ◽  
Alexei Vinogradov

Magnesium alloys are contemporary candidates for many structural applications of which medical applications, such as bioresorbable implants, are of significant interest to the community and a challenge to materials scientists. The generally poor resistance of magnesium alloys to environmentally assisted fracture, resulting, in particular, in faster-than-desired bio-corrosion degradation in body fluids, strongly impedes their broad uptake in clinical practice. Since temporary structures implanted to support osteosynthesis or healing tissues may experience variable loading, the resistance to bio-corrosion fatigue is a critical issue that has yet to be understood in order to maintain the structural integrity and to prevent the premature failure of implants. In the present communication, we address several aspects of the corrosion fatigue behaviour of magnesium alloys, using the popular commercial ZK60 Mg-Zn-Zr alloy as a representative example. Specifically, the effects of the testing frequency, surface roughness and metallic coatings are discussed in conjunction with the fatigue fractography after the testing of miniature specimens in air and simulated body fluid. It is demonstrated that accelerated environmentally assisted degradation under cyclic loading occurs due to a complicated interplay between corrosion damage, stress corrosion cracking and cyclic loads. The occurrence of corrosion fatigue in Mg alloys is exaggerated by the significant sensitivity to the testing frequency. The fatigue life or strength reduced remarkably with a decrease in the test frequency.


Author(s):  
Siddesh Kumar N M ◽  
Chethan S ◽  
Talluri Nikhil ◽  
Dhruthi .

Abstract An enormous amount of research is conducted on aluminium alloys on friction stir process, despite magnesium alloy reporting severe weight reduction when compared to aluminium alloys; a very slight amount of research was testified by friction stir processing of magnesium alloys. Magnesium is highly reactive and susceptible to corrosion in the presence of an aggressive environment. This highly corrosive nature of magnesium limits its applications. Surface properties like crystal structure, composition, and micro structure influence the corrosion and wear property of the material. Coating and alloying like laser surface modifications are performed to passivate magnesium surface from corrosion. Coating techniques, however were found to be insufficient in corrosion protection due to coating defects like pores, cracks, etc, and adhesion problems caused due to poor surface preparation of the substrate, and also impurities present in coating which provides micro galvanic cells for corrosion. Current study analyses the detailed overview of different types of Surface modification methods such as Physical vapor deposition, Chemical vapor deposition, Chemical conversion coating, Ion implantation coating techniques and also work focuses on few of Alloying or Surface processing methods such as Laser surface modification namely Laser surface melting, Laser surface cladding, Laser Shot Peening, Laser surface alloying and Friction stir processing (FSP). Friction stir processing a novel method derived from friction stir welding is used as surface modification method, which modifies micro structure, composition of surface layer without changing bulk properties, for enhancing corrosion resistance property. FSP enhances the micro structure and homogenizes but it is also eliminating the breaking up of the brittle- network phases and also cast micro structure imperfections. Indeed FSP can produce particle and fiber-reinforced magnesium-based surface composites. FSP empowers the manufacturing of magnesium by adding additives. Comparison of the different methods of coating and surface modification has been compared with FSP


Author(s):  
Zikun Li ◽  
Jing Tang ◽  
Xiaobao Tian ◽  
Qingyuan Wang ◽  
Wentao Jiang ◽  
...  
Keyword(s):  

2022 ◽  
Author(s):  
Seong Ryoung Kim ◽  
Keon Mo Lee ◽  
Jin Hong Kim ◽  
Young Jin Choi ◽  
Han Ick Park ◽  
...  

Abstract Background: Magnesium alloys have been receiving much attention for use in biodegradable metal implants because of their excellent mechanical properties and biocompatibility. However, their rapid breakdown and low bioactivity can cause the implant to lose mechanical integrity before the bone is completely healed. Moreover, hydrogen gas released during degradation can significantly delay the tissue regeneration process. To solve the instability of magnesium alloys, Zn and Ca can be added to improve the mechanical properties and biocompatibility. One other way to improve the mechanical properties of Mg is plasma electrolytic oxidation (PEO), which provides a dense, thick ceramic-like coating on the Mg surface. In this study, high-purity Mg was selected as the control, and Mg-1wt%Zn-0.1wt%Ca alloy and PEO-treated Mg-1wt%Zn-0.1wt%Ca alloy were selected as the test materials; the results of radiographic and histological analyses of their biocompatibility are reported herein. Materials and method: Nineteen New Zealand white rabbits were used in the study. Rod-bars (Ø2.7x13.6mm) were placed on both paravertebral muscles, and cannulated screws (Ø2.7x10mm) were placed on both femur condyle notches. Each animal was implanted in all four sites. X-rays were taken at 0, 2, 4, 8, and 12 weeks, micro-CT, and live-CT were taken at 4, 8, and 12 weeks. At weeks 4, 8, and 12, individuals representing each group were selected and sacrificed to prepare specimens for histopathological examination. Result: The results confirm that in vivo, Mg-1wt%Zn-0.1wt%Ca alloy had higher corrosion resistance than high-purity Mg and safely degraded over time without causing possible side effects (foreign body or inflammatory reactions, etc.). In addition, PEO treatment of Mg-1wt%Zn-0.1wt%Ca alloy had a positive effect on fracture recovery by increasing the bonding area with bone. Conclusion: Our results suggest that PEO treatment of Mg-1wt%Zn-0.1wt%Ca alloy can be a promising biomaterials in the field of various clinical situations such as orthopedic and maxillofacial surgerys.


2022 ◽  
Vol 201 ◽  
pp. 110881
Author(s):  
Xiaoxi Mi ◽  
Lianjuan Tian ◽  
Aitao Tang ◽  
Jing Kang ◽  
Peng Peng ◽  
...  

2022 ◽  
pp. 103157
Author(s):  
Taha Cagri Senocak ◽  
Taha Alper Yilmaz ◽  
Hasan Feyzi Budak ◽  
Gokhan Gulten ◽  
Ahmet Melik Yilmaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document