lap joints
Recently Published Documents


TOTAL DOCUMENTS

1755
(FIVE YEARS 410)

H-INDEX

58
(FIVE YEARS 9)

2022 ◽  
Vol 170 ◽  
pp. 108572
Author(s):  
Guangyong Sun ◽  
Yang Wei ◽  
Xintao Huo ◽  
Quantian Luo ◽  
Qing Li

Author(s):  
Raffaele Ciardiello ◽  
Domenico D’Angelo ◽  
Laura Cagna ◽  
Alessandro Croce ◽  
Davide Salvatore Paolino

Plasma treatment has been used in recent years to activate the surfaces of adhesive substrates and thus as an adhesion promoter between adhesive and substrates. The use of plasma treatments is widely adopted in the automotive industries especially for polymers that present low surface energy, such as polypropylene. In this work, polypropylene substrates used in the automotive industries have been treated with two different techniques: vacuum and atmospheric plasma. Then, polyurethane and methacrylate adhesives have been used to bond single lap joints (SLJs). Typically, these two adhesives cannot bond polypropylene substrates without surface treatments. An experimental plan has been designed to investigate the process parameters that can increase the functional polar groups (FPGs) maximizing the adhesion strength. Besides the types of plasma, two different gas carriers (air and nitrogen) and different treatment times have been investigated. The substrates, treated and not treated, have been assessed through scanning electron microscopy, energy-dispersive X-ray analysis, and Fourier-transform infrared spectroscopy to quantitatively assess the increment of FPGs after the different treatments. The experimental plan shows that the atmospheric plasma can improve the surface of the substrates by using a smaller time. Mechanical tests on SLJs show that methacrylate and polyurethane cannot bond polypropylene substrates without the plasma treatment. On the other hand, the treated substrates can form a strong bonding with the adhesive since all SLJs exhibit a substrate failure. Mechanical tests have been also carried out after three different aging cycles showing that the adopted plasma treatment is not affected by the aging cycles.


CORROSION ◽  
10.5006/4019 ◽  
2021 ◽  
Author(s):  
Robert Kelly

The nature and rates of the chemical and electrochemical reactions that occur within the occluded regions of a given alloy are controlled by the local electrochemical potential and the local solution composition. The very small physical dimensions of these regions lead to challenges in both measurement and modeling. When performed in a coordinated and complementary way, measurements and modeling provide insights into the controlling processes of a range of localized corrosion phenomena, including crevice corrosion, pitting, intergranular corrosion, and stress-corrosion cracking. Examples of attempts to overcome the measurement challenges are described for a range of corrosion scenarios, including identification of the critical ionic species in stainless steel crevice corrosion and in the corrosion of aircraft lap joints, operando measurement of chemistry and potential simultaneously within stress-corrosion cracks, and monitoring of water layer thickness in salt spray testing. Examples of work addressing the challenges in modeling localized corrosion including intergranular corrosion of AA5XXX alloys, scaling laws in crevice corrosion, the extent to which the Laplace Equation can be used and applied to geometrically complex galvanic structures, and an approach to modeling localized corrosion for extraordinarily long service times. Finally, suggestions regarding future avenues of research are provided.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7797
Author(s):  
Zhu Ruican ◽  
Guo Shixiong ◽  
Huang Chao ◽  
Lei Zhenglong ◽  
Zhang Xinrui ◽  
...  

The influence of tin foil and Ni coatings on microstructures, mechanical properties, and the interfacial reaction mechanism was investigated during laser welding/brazing of Al/Cu lap joints. In the presence of a Zn-based filler, tin foil as well as Ni coating strengthened the Al/Cu joints. The tin foil only slightly influenced the joint strength. It considerably improved the spreading/wetting ability of the weld filler; however, it weakened the bonding between the seam and the Al base metal. The Ni coating considerably strengthened the Al/Cu lap joints; the highest tensile strength was 171 MPa, which was higher by 15.5% than that of a joint without any interlayer. Microstructure analysis revealed that composite layers of Ni3Zn14–(τ2 Zn–Ni–Al ternary phase)–(α-Zn solid solution)–Al3Ni formed at the fusion zone (FZ)/Cu interface. Based on the inferences about the microstructures at the interfaces, thermodynamic results were calculated to analyze the interfacial reaction mechanism. The diffusion of Cu was limited by the Ni coating and the mutual attraction between the Al and Ni atoms. The microstructure comprised Zn, Ni, and Al, and they replaced the brittle Cu–Zn intermetallic compounds, successfully strengthening the bonding of the FZ/Cu interface.


2021 ◽  
Author(s):  
Weiwen Chen ◽  
Xiqin Liu ◽  
Hengchang Bu ◽  
Feiyun Wang ◽  
Jiebang Luo ◽  
...  

Abstract Hybrid components composed of CFRTP (Carbon Fiber Reinforced Thermoplastic Polymer) and TC4 titanium alloy are increasingly applied in the aerospace field. The scanning mode has a significant influence on the quality of laser joining joint between CFRTP and TC4 titanium alloy. Therefore, the laser joining between TC4 titanium alloy with surface microgrooves and CFRTP has been implemented under oscillating laser joining mode and linear laser joining mode respectively in the present research. The temperature distribution is qualitatively explored based on the established mathematical model of laser joining between CFRTP and TC4 titanium alloy. The interface morphology and the joining strength of CFRTP/TC4 titanium alloy lap joints under oscillating laser joining and linear laser joining are compared. The results indicate that the simulated temperature distribution shows good agreement with the experimental result. Compared with linear laser joining, the oscillating laser joining weakens the heat concentration and creates a heating zone with larger area and more uniform temperature distribution. The interface morphology of laser joining CFRTP/TC4 titanium alloy joints with better resin filling and fewer bubble defects is obtained by oscillating laser joining due to the temperature variation of the form of unequal amplitude oscillations, whereas there are a large number of large-size bubbles in the filling resin and small-sized fusion gaps distributed at the interface with the linear laser scanning mode. By adopting the joining method with oscillating laser scanning mode, higher quality joints can be obtained.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7705
Author(s):  
Przemysław Golewski ◽  
Marek Nowicki ◽  
Tomasz Sadowski ◽  
Daniel Pietras

This paper presents the results of an experimental study into single-lap joints. One part of the joint was made as a 3D printed polymer and had cylindrical tenons, while the other part was made of an aluminium flat bar having mortises whose diameter and distribution corresponded to the polymer tenons. In addition to the mechanical joint, a layer of double-sided VHB (Very High Bond) adhesive tape was also placed in the lap, thus creating a hybrid joint. In total, 80 specimens were made, which were divided into four groups: A—specimens with one tenon of different diameters, B—specimens with different number of tenons of the same diameter, C—specimens characterised by multi-stage operation and R—reference specimens, connected only by double-sided adhesive tape. The joints were subjected to uniaxial tensile tests. The force–displacement characteristics obtained and the energy required, up to the point of the failure of the joints, have been analysed in this paper. The four and six-stage joints designed can significantly increase the safety of the structures in which they will be used.


Author(s):  
Ievgen Gavrylov ◽  
Mikhail Karuskevich ◽  
Sergey Ignatovich ◽  
Sviatoslav Yutskevych ◽  
Tetiana Maslak
Keyword(s):  

Author(s):  
Mehdi Veisytabar ◽  
Arash Reza ◽  
Younes Shekari

This paper aims to develop a viscoelastic analytical model for adhesively bonded single stepped-lap joints subjected to tensile loading. The adherends are aluminum alloy A6063 and modeled as Timoshenko elastic beams and the adhesive is epoxy type B. A three-parameter fractional viscoelastic foundation (3PFVF) model is proposed to express the governing stresses in the joint and the fractional Zener model is used to model the viscoelastic behavior of the adhesive layer. The proposed 3PFVF model makes it possible to have different peel stresses between the two interfaces of adhesive and adherends. The governing differential equations are derived in the Laplace domain, and then solved and transformed simultaneously in the time domain using the Gaver-Stehfest inverse Laplace transform method. The finite element simulation with ANSYS is applied to validate the proposed method. The results show that a simple fractional viscoelastic model, which has a short differential equation, offers the same results as the classical viscoelastic models, which have higher and more complex differential equations. Moreover, the results show that the maximum shear and peel stresses in the single stepped-lap joints are about 20% less than single-lap joints.


Sign in / Sign up

Export Citation Format

Share Document