scholarly journals Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states

2016 ◽  
Vol 277 ◽  
pp. 126-135 ◽  
Author(s):  
Aslak Tveito ◽  
Glenn T. Lines ◽  
Andrew G. Edwards ◽  
Andrew McCulloch
2018 ◽  
Vol 6 (1) ◽  
pp. 41-64 ◽  
Author(s):  
Aslak Tveito ◽  
Mary M. Maleckar ◽  
Glenn T. Lines

AbstractSingle channel dynamics can be modeled using stochastic differential equations, and the dynamics of the state of the channel (e.g. open, closed, inactivated) can be represented using Markov models. Such models can also be used to represent the effect of mutations as well as the effect of drugs used to alleviate deleterious effects of mutations. Based on the Markov model and the stochastic models of the single channel, it is possible to derive deterministic partial differential equations (PDEs) giving the probability density functions (PDFs) of the states of the Markov model. In this study, we have analyzed PDEs modeling wild type (WT) channels, mutant channels (MT) and mutant channels for which a drug has been applied (MTD). Our aim is to show that it is possible to optimize the parameters of a given drug such that the solution of theMTD model is very close to that of the WT: the mutation’s effect is, theoretically, reduced significantly.We will present the mathematical framework underpinning this methodology and apply it to several examples. In particular, we will show that it is possible to use the method to, theoretically, improve the properties of some well-known existing drugs.


2004 ◽  
Vol 2004 (2) ◽  
pp. 137-141 ◽  
Author(s):  
Abraham Boyarsky ◽  
Pawel Góra

Let ρ(x,t) denote a family of probability density functions parameterized by time t. We show the existence of a family {τ1:t>0} of deterministic nonlinear (chaotic) point transformations whose invariant probability density functions are precisely ρ(x,t). In particular, we are interested in the densities that arise from the diffusions. We derive a partial differential equation whose solution yields the family of chaotic maps whose density functions are precisely those of the diffusion.


2019 ◽  
Author(s):  
◽  
Marco Antonio Navarro

Ionic currents drive cellular function within all living cells to perform highly specific tasks. For excitable cells, such as muscle and neurons, voltage-gated ion channels have finely tuned kinetics that allow the transduction of Action potentials to other cells. Voltage-gated ion channels are molecular machines that open and close depending on electrical potential. Neuronal firing rates are largely determined by the overall availability of voltage-gated Na+ and K+ currents.This work describes new approaches for collecting and analyzing experimental data that can be used to streamline experiments. Ion channels are composed of multimeric complexes regulated by intracellular factors producing complex kinetics. The stochastic behavior of thousands of individual ion hannels coordinates to produce cellular activity. To describe their activity and test hypotheses about the channel, experimenters often fit Markov models to a set of experimental data. Markov models are defined by a set of states, whose transitions described by rate constants. To improve the modeling process, we have developed computational approaches to introduce kinetic constraints that reduces the parameter search space. This work describes the implementation and mathematical transformations required to describe linear and non-linear parameter constraints that govern rate constants. Not all ion channel behaviors can easily be described by rate constants. Therefore, we developed and implemented a penalty-based mechanism that can be used to guide the optimization engine to produce a model with a desired behavior, such as single-channel open probability and use dependent effects. To streamline data collection for experiments in brain slice preparations, we developed a 3D virtual software environment that incorporates data from micro-positioning motors and scientific cameras in real-time. This environment provides positional feedback to the investigator and allows for the creation of data maps including both images and electrical recordings. We have also produced semi-automatic targeting procedures that simplifies the overall experimental experience. Experimentally, this work also examines how the kinetic mechanism of voltage gated Na channels regulates the neuronal firing of brainstem respiratory neurons. These raphe neurons are intrinsic pacemakers that do not rely on synaptic connections to elicit activity. I explored how intracellular calcium regulates the kinetics of TTX-sensitive Na+ currents using whole-cell patch clamp electrophysiology. Established with intracellular Ca2+ buffers, high [Ca2+] levels greater than ~7 [micro]M did not change the voltage dependence of steady-state activation and inactivation, but slightly slowed inactivation time course. However, the recovery from inactivation and use dependence inactivation is slowed by high intracellular [Ca2+]. Overall, these approaches described in this work have improved data acquisition and data analysis to create better ion channel models and enhance the electrophysiology experience.


Sign in / Sign up

Export Citation Format

Share Document