Implementation of Hertz theory and validation of a finite element model for stress analysis of gear drives with localized bearing contact

2011 ◽  
Vol 46 (6) ◽  
pp. 765-783 ◽  
Author(s):  
Ignacio Gonzalez-Perez ◽  
Jose L. Iserte ◽  
Alfonso Fuentes
2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Ignacio Gonzalez-Perez ◽  
Alfonso Fuentes-Aznar

A new finite element model for stress analysis of gear drives is proposed. Tie-surface constraints are applied at each tooth of the gear model to obtain meshes that can be independently defined: a finer mesh at contact surfaces and fillet and a coarser mesh in the remaining part of the tooth. Tie-surface constraints are also applied for the connection of several teeth in the model. The model is validated by application of the Hertz's theory in a spiral bevel gear drive with localized bearing contact and by observation of convergency of contact and bending stresses. Maximum contact pressure, maximum Mises stress, maximum Tresca stress, maximum major principal stress, and loaded transmission errors are evaluated along two cycles of meshing. The effects of the boundary conditions that models with three, five, seven, and all the teeth of the gear drive provide on the above-mentioned variables are discussed. Several numerical examples are presented.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Ignacio Gonzalez-Perez ◽  
Victor Roda-Casanova ◽  
Alfonso Fuentes ◽  
Francisco T. Sanchez-Marin ◽  
Jose L. Iserte

The finite element method is widely applied for the determination of contact and bending stresses in gear drives. It is based on the finite element model of the gear drive that is built by the discretization of the pinion and gear teeth and usually does not take into account the supporting components of the gears, as shafts, their bearings, or the gear case. Such components have an important influence in the formation of the bearing contact due to their deformations under load. Recently, some improved models have been proposed for finite element analysis of gear drives including their shafts. Those models have allowed shaft deflections to be taken into account for the investigation of formation of the bearing contact under load and its influence on bending and contact stresses. In this paper, an enhanced finite element model that takes into account not only the shaft deflections but also the torsional deformation of gear tooth surfaces due to torque transmission is proposed. Some numerical examples have been included.


2011 ◽  
Vol 418-420 ◽  
pp. 50-54
Author(s):  
Shi Hong Pang ◽  
Juan Rong Ma ◽  
Zhen Zhu Ma ◽  
Li Chuang Wang

The shear modulus of PVB and SGP interlayer is analyzed. With the same conditions of load duration and temperature, the shear modulus of SGP interlayer is about fifteen times than that of PVB interlayer. A finite element model of laminated glass is established in this paper. The simulation results show that the maximum principal stress contours of PVB laminated glass change from a circular to a petal-shaped one and those of SGP laminated glass change form a quadrangular to a square-shaped one when the temperature rises from 20 degrees Celsius to 50 degrees Celsius.


Sign in / Sign up

Export Citation Format

Share Document