loading condition
Recently Published Documents


TOTAL DOCUMENTS

784
(FIVE YEARS 173)

H-INDEX

29
(FIVE YEARS 7)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qiong Chen ◽  
Deshan Cui ◽  
Yu Chen ◽  
Xianyu Tao ◽  
Wei Xiang

Earthquakes or cyclic loadings cause significant changes in the strength characteristics of soil. These changes, especially for sliding zone soil, can lead to catastrophic landslides. Taking into account this characteristic, this paper investigates the effects of prior cyclic loading on the consolidated undrained triaxial compression strength of sliding zone soil with the KTL triaxial automated system. Our experimental results indicate that the prior cyclic loading has a significant effect on the strength behaviour of saturated sliding zone soil. Under different confining pressures, cycle periods, and number of cycles, the samples exhibit the characteristics of strain-hardening. Deviatoric stress under cyclic loading condition is smaller than that with monotonic loading condition under different confining pressures, cycle periods, and number of cycles. As the confining pressure and cycle period increase, the failure stress ratio decreases. The axial strain exhibits a steep rise first and then stays stable under a cycle period of 90 s, while the axial strain shows a linear increase with an increase in the number of cycles under a cycle period of 10 s under confining pressures of 100 kPa and 400 kPa, respectively. The logarithmic relation correlates well with the failure stress ratio in the cyclic loading tests, which preliminary validates the applicability of logarithmic relation for sliding zone soil influenced by prior cyclic loading, providing a theoretical basis and guidance for the further understanding of strength characteristics of sliding zone soil.


Author(s):  
Nikhil Kumar Singh ◽  
Jyoti Yadav

A beam bridge is a bridge that uses struts as a method of supporting the deck. A bridge consists of three sections: the foundation consisting of protrusions and supports and the substructure consisting of protrusions and quay and the superstructure (bracing, cantilever or curve) and the deck. A beam bridge is probably the most manufactured and used bridge on the planet. Its basic plant, at its best, can be likened to a tree trunk extending to one side to alternate across a stream or river. All decks consist of two main parts: the substructure and the superstructure. The superstructure is everything from the support cushions to - it's the thing that supports the posts and it's the most distinctive part of the deck. The substructure is the device that exchanges the poles of the superstructure on the ground. The two sections must work together to form a strong and durable bridge. Prestressed concrete is basically concrete where the internal concern is reasonable and the pressure propagation created by the external load is concentrated to the desired extent. In this research, we analyze a beam bridge with the effect of prestressed concrete and compare it to a generic deck bridge. Regarding the finite element analysis, the analysis of forces and costs. Here it is concluded that the implementation of a prestressed ceiling results in an economical, stable and load-resistant element.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012170
Author(s):  
A Garg ◽  
S Gupta ◽  
HD Chalak

Abstract In present work, an attempt has been made for carrying out free vibration and buckling analysis of laminated sandwich beams under hygrothermal conditions. The analysis is carried out using fourth order zigzag theory based on finite element formulation. The efficiency of proposed model is validated by comparing the present results with those available in literature. Geometric properties and loading condition widely affect the behavior of the laminated sandwich beams.


Author(s):  
Shubham D. Shingade

Abstract: The vertical lode test is conducted on RCC bore pile this test is conducted as per the guidelines of IS 2911 part 4 respectively. This test is conducted on “Perstorp site which is located in dist. -Bharuch Gujrat. In this region the Strata of soil is soft aquifer hence to carry heavy structural load, pile foundation is best solution. The experimental study is carries out on 10 meter length of Bore pile of 500mm in diameter of loading area of 283.5 sq.cm. This paper is based on experimental study on bore pile due to vertical loading condition and expressing the behaviour of pile under the vertical incremental loading condition. And in this paper we follow the approach of analytical and experimental.


2021 ◽  
Vol 11 (19) ◽  
pp. 9189
Author(s):  
Li Jia ◽  
Zhi Fang ◽  
Zhengmeng Huang ◽  
Kypros Pilakoutas ◽  
Qiwu Wang ◽  
...  

This paper presents an experimental investigation on the flexural behavior of ultra-high-performance concrete (UHPC) beams prestressed with external carbon fiber-reinforced polymer (CFRP) tendons. A total of eight T-shaped beam specimens were fabricated and tested, and the effects of the effective prestressing stress, partial prestressing ratio, deviated angle, and loading condition on the flexural behavior were analyzed. The experimental results indicate that the fully prestressed beams experienced a brittle failure, and the shear capacity of these beams was mainly controlled by the effective prestressing stress in CFRP tendons and the ultimate tensile strength of UHPC, whereas the partially prestressed beams failed in a ductile manner. The presence of internal steel reinforcement could significantly improve the flexural capacity and deformation ability. Thus, internal reinforcements should not be omitted from UHPC beams with CFRP tendons. A higher effective prestressing stress resulted in enhanced cracking load and flexural capacity. The deviated angle enhanced the utilization efficiency of high strength CFRP tendons. The loading condition exerted a slight influence on the flexural behavior of the specimens. Moreover, a method considering the effect of steel fibers was proposed and verified to predict the flexural capacity of UHPC beams prestressed with external CFRP tendons.


2021 ◽  
Vol 104 (4) ◽  
pp. 003685042110363
Author(s):  
Zhiping Zeng ◽  
Guanghui Hu ◽  
Xiangdong Huang ◽  
Weidong Wang ◽  
Ayoub Abdullah Senan Qahtan ◽  
...  

Low-Vibration Tracks (LVTs) are widely used in subway tunnels for their excellent performance, but the application in heavy-duty railways still requires a lot of feasibility studies. In this study, the statics performance of LVT under different axle loads, load direction, and load position is explored using the finite element software Abaqus. The Timoshenk beam element and nonlinear spring element 3D solid element are used to represent rails, fasteners, and the other track structure respectively. The paper established the finite element model of LVT to study the mechanical characteristics of low vibration track structure under varying loading condition. The applied loads are determined according to the Heavy-Haul Railway Track Structure Design Code. The results shows: (1) The deformation and stress of the LVT structure show a linear relationship with the increase of the axle load. (2) Slab end loading and lateral load are more unfavorable to the stress and deformation of the track structure. When slab end is loaded with vertical load, the vertical load is distributed on four supporting blocks along the longitudinal direction with a ratio of 1:4:4:1, and the lateral direction is mainly borne by two adjacent fastener nodes with the total load proportion of 47% and 47% respectively. (3) The LVT structure can guarantee the safety of static performance under 30 t axle load and the maximum axle load should not exceed 36 t. The paper provides a guideline for the construction and maintenance of LVT structure in heavy haul railway.


Sign in / Sign up

Export Citation Format

Share Document