A hybrid data-driven model order reduction strategy for flexible multibody systems considering impact and friction

2022 ◽  
Vol 169 ◽  
pp. 104649
Author(s):  
Ningning Song ◽  
Haijun Peng ◽  
Ziyun Kan
Author(s):  
Ali Moghadasi ◽  
Alexander Held ◽  
Robert Seifried

In recent years, topology optimization has been used for optimizing members of flexible multibody systems to enhance their performance. Here, an extension to existing topology optimization schemes for flexible multibody systems is presented in which a more accurate model of revolute joints and bearing domains is included. This extension is of special interest since a connection between flexible members in a multibody system using revolute joints is seen in many applications. Moreover, the modeling accuracy of the bearing area is shown to be influential on the shape of the optimized structure. In this work, the flexible bodies are incorporated in the multibody simulation using the floating frame of reference formulation, and their elastic deformation is approximated using global shape functions calculated in the model order reduction analysis. The modeling of revolute joints using Hertzian contact law is incorporated in this framework by introducing a corrector load in the bearing model. Furthermore, an application example of a flexible multibody system with revolute joints is optimized for minimum value of compliance, and a comparative study of the optimization result is performed with an equivalent system which is modeled with nonlinear finite elements.


2020 ◽  
Vol 15 (10) ◽  
Author(s):  
Qinglong Tian ◽  
Peng Lan ◽  
Zuqing Yu

Abstract A new method of model-order reduction for the flexible multibody system which undergoes large deformation and rotation is proposed. At first, the flexible multibody system is modeled by absolute nodal coordinate formulation (ANCF), and then, the whole motion process of the system is divided into a series of quasi-static equilibrium configurations according to a given criterion. Afterward, motion equation is locally linearized based on the Taylor expansion. Therefore, the constant tangent stiffness matrix is obtained and does not need to be updated until the next configuration. Based on the locally linearized motion equation, the free-interface component mode synthesis (CMS) method is adopted to reduce the degrees-of-freedom (DOF) of the flexible multibody system molded by ANCF. The generalized-α integrator is used to solve the reduced motion equation. To verify the accuracy and efficiency of the proposed method, three examples including a free-falling pendulum, a flexible spinning beam and a deployable sail arrays are presented. Results show that the proposed method is able to reduce the computing time and maintain high accuracy.


Sign in / Sign up

Export Citation Format

Share Document