Modeling of Revolute Joints in Topology Optimization of Flexible Multibody Systems

Author(s):  
Ali Moghadasi ◽  
Alexander Held ◽  
Robert Seifried

In recent years, topology optimization has been used for optimizing members of flexible multibody systems to enhance their performance. Here, an extension to existing topology optimization schemes for flexible multibody systems is presented in which a more accurate model of revolute joints and bearing domains is included. This extension is of special interest since a connection between flexible members in a multibody system using revolute joints is seen in many applications. Moreover, the modeling accuracy of the bearing area is shown to be influential on the shape of the optimized structure. In this work, the flexible bodies are incorporated in the multibody simulation using the floating frame of reference formulation, and their elastic deformation is approximated using global shape functions calculated in the model order reduction analysis. The modeling of revolute joints using Hertzian contact law is incorporated in this framework by introducing a corrector load in the bearing model. Furthermore, an application example of a flexible multibody system with revolute joints is optimized for minimum value of compliance, and a comparative study of the optimization result is performed with an equivalent system which is modeled with nonlinear finite elements.

Author(s):  
Thomas Gorius ◽  
Robert Seifried ◽  
Peter Eberhard

In many cases, the design of a tracking controller can be significantly simplified by the use of a 2-degrees of freedom (DOF) control structure, including a feedforward control (i.e., the inversion of the nominal system dynamics). Unfortunately, the computation of this feedforward control is not easy if the system is nonminimum-phase. Important examples of such systems are flexible multibody systems, such as lightweight manipulators. There are several approaches to the numerical computation of the exact inversion of a flexible multibody system. In this paper, the singularly perturbed form of such mechanical systems is used to give a semianalytic solution to the tracking control design. The control makes the end-effector to even though not exactly, but approximately track a certain trajectory. Thereby, the control signal is computed as a series expansion in terms of an overall flexibility of the bodies of the multibody system. Due to the use of symbolic computations, the main calculations are independent of given parameters (e.g., the desired trajectories), such that the feedforward control can be calculated online. The effectiveness of this approach is shown by the simulation of a two-link flexible manipulator.


Author(s):  
Markus Burkhardt ◽  
Robert Seifried ◽  
Peter Eberhard

The symbolic modeling of flexible multibody systems is a challenging task. This is especially the case for complex-shaped elastic bodies, which are described by a numerical model, e.g., an FEM model. The kinematic and dynamic properties of the flexible body are in this case numerical and the elastic deformations are described with a certain number of local shape functions, which results in a large amount of data that have to be handled. Both attributes do not suggest the usage of symbolic tools to model a flexible multibody system. Nevertheless, there are several symbolic multibody codes that can treat flexible multibody systems in a very efficient way. In this paper, we present some of the modifications of the symbolic research code Neweul-M2 which are needed to support flexible bodies. On the basis of these modifications, the mentioned restrictions due to the numerical flexible bodies can be eliminated. Furthermore, it is possible to re-establish the symbolic character of the created equations of motion even in the presence of these solely numerical flexible bodies.


2018 ◽  
Vol 179 ◽  
pp. 01018
Author(s):  
Jielong Wang ◽  
Bing Shi

This paper presents the techniques of contact modeling for revolute joints in flexible multibody systems, in which the dry clearance revolute joints have been coupled with the flexibility of connected bodies. The contact model for revolute joints takes into account the relative planar motion caused by the clearance between the outer and inner races. This model applies a penalty method to simulate the phenomenon of inner-penetration between contact/impact bodies. The relationship between the normal contact force and the inner-penetration is described by the nonlinear Hertz model with energy dissipation. Meanwhile, the friction force can be predicted from continuous Coulomb's law. Finally, an example of flexible multibody systems has been simulated by using the developed contact models.


Author(s):  
Martin M. Tong

The computation of the generalized velocities from the generalized momenta of a multibody system is a part of the numerical solution of the dynamics equations when they are given in the Hamiltonian form. The states of these equations are the generalized coordinates and momenta, (q, p). The generalized velocity, q˙, is defined by q˙ = J−1p, where J is the system mass matrix. The effort in solving q˙ by direct methods is order(N3) where N is the number of bodies in the system. This paper presents an order(N) recursive algorithm to compute q˙ for flexible multibody systems.


2011 ◽  
Vol 55-57 ◽  
pp. 1382-1385
Author(s):  
Ting Pi ◽  
Yun Qing Zhang

Practical mechanical systems often contain several flexible components and uncertain parameters which makes it hard to predict the system behavior and performance exactly. This research presents the uncertainty analysis of flexible multibody systems with random variables. Absolute nodal coordinate formulation (ANCF), which is different from the traditional finite element method, is employed to model the flexibility here. Monte Carlo method is successfully used to simulate flexible multibody systems of index-3. The method proposed is demonstrated by an example of flexible slider-crank mechanism.


Sign in / Sign up

Export Citation Format

Share Document