Positively-charged nanofiltration membranes constructed via gas/liquid interfacial polymerization for Mg2+/Li+ separation

2022 ◽  
Vol 644 ◽  
pp. 119942
Author(s):  
Ming-Bang Wu ◽  
Hao Ye ◽  
Zhi-Yuan Zhu ◽  
Guo-Tao Chen ◽  
Lu-Lin Ma ◽  
...  
2014 ◽  
Vol 465 ◽  
pp. 41-48 ◽  
Author(s):  
Jiaojiao Zhao ◽  
Yanlei Su ◽  
Xin He ◽  
Xueting Zhao ◽  
Yafei Li ◽  
...  

2020 ◽  
Vol 8 (6) ◽  
pp. 3238-3245 ◽  
Author(s):  
Shushan Yuan ◽  
Gang Zhang ◽  
Junyong Zhu ◽  
Natalie Mamrol ◽  
Suilin Liu ◽  
...  

This study demonstrates the application of a hydrogel as the aqueous phase in interfacial polymerization for the synthesis of a thin film composite membrane with ultrahigh permeability.


RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 34134-34151 ◽  
Author(s):  
Avishek Pal ◽  
T. K. Dey ◽  
Anshu Singhal ◽  
R. C. Bindal ◽  
P. K. Tewari

TFN-NF membranes prepared byin situinterfacial polymerization of branched polyethyleneimine and trimesoyl chloride, with simultaneous impregnation of as-synthesized hexagonal wurtzite nano-ZnO either through aqueous or organic phase.


2017 ◽  
Vol 525 ◽  
pp. 269-276 ◽  
Author(s):  
Xiao-Hua Ma ◽  
Zhe Yang ◽  
Zhi-Kan Yao ◽  
Zhen-Liang Xu ◽  
Chuyang Y. Tang

2020 ◽  
pp. 118975
Author(s):  
Liang Cheng ◽  
Mengxiao Zhang ◽  
Chuanjie Fang ◽  
Weilin Feng ◽  
Youyi Xu ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 269 ◽  
Author(s):  
Yu-Hsuan Chiao ◽  
Tanmoy Patra ◽  
Micah Belle Marie Yap Ang ◽  
Shu-Ting Chen ◽  
Jorge Almodovar ◽  
...  

Nanofiltration membranes have evolved as a promising solution to tackle the clean water scarcity and wastewater treatment processes with their low energy requirement and environment friendly operating conditions. Thin film composite nanofiltration membranes with high permeability, and excellent antifouling and antibacterial properties are important component for wastewater treatment and clean drinking water production units. In the scope of this study, thin film composite nanofiltration membranes were fabricated using polyacrylonitrile (PAN) support and fast second interfacial polymerization modification methods by grafting polyethylene amine and zwitterionic sulfobutane methacrylate moieties. Chemical and physical alteration in structure of the membranes were characterized using methods like ATR-FTIR spectroscopy, XPS analysis, FESEM and AFM imaging. The effects of second interfacial polymerization to incorporate polyamide layer and ‘ion pair’ characteristics, in terms of water contact angle and surface charge analysis was investigated in correlation with nanofiltration performance. Furthermore, the membrane characteristics in terms of antifouling properties were evaluated using model protein foulants like bovine serum albumin and lysozyme. Antibacterial properties of the modified membranes were investigated using E. coli as model biofoulant. Overall, the effect of second interfacial polymerization without affecting the selectivity layer of nanofiltration membrane for their potential large-scale application was investigated in detail.


Sign in / Sign up

Export Citation Format

Share Document