aqueous phase
Recently Published Documents





Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 123132
Haisheng Lin ◽  
Lijun Zhang ◽  
Shu Zhang ◽  
Qingyin Li ◽  
Xun Hu

2022 ◽  
Vol 306 ◽  
pp. 114475
Raul Garcia-Cervilla ◽  
Aurora Santos ◽  
Arturo Romero ◽  
David Lorenzo

2022 ◽  
Vol 430 ◽  
pp. 132724
Hanwei Jiao ◽  
Chaojie Zhang ◽  
Mo Yang ◽  
Yanhui Wu ◽  
Qi Zhou ◽  

2022 ◽  
Vol 22 (1) ◽  
pp. 505-533
Pamela A. Dominutti ◽  
Pascal Renard ◽  
Mickaël Vaïtilingom ◽  
Angelica Bianco ◽  
Jean-Luc Baray ◽  

Abstract. We present here the results obtained during an intensive field campaign conducted in the framework of the French “BIO-MAÏDO” (Bio-physico-chemistry of tropical clouds at Maïdo (Réunion Island): processes and impacts on secondary organic aerosols' formation) project. This study integrates an exhaustive chemical and microphysical characterization of cloud water obtained in March–April 2019 in Réunion (Indian Ocean). Fourteen cloud samples have been collected along the slope of this mountainous island. Comprehensive chemical characterization of these samples is performed, including inorganic ions, metals, oxidants, and organic matter (organic acids, sugars, amino acids, carbonyls, and low-solubility volatile organic compounds, VOCs). Cloud water presents high molecular complexity with elevated water-soluble organic matter content partly modulated by microphysical cloud properties. As expected, our findings show the presence of compounds of marine origin in cloud water samples (e.g. chloride, sodium) demonstrating ocean–cloud exchanges. Indeed, Na+ and Cl− dominate the inorganic composition contributing to 30 % and 27 %, respectively, to the average total ion content. The strong correlations between these species (r2 = 0.87, p value: < 0.0001) suggest similar air mass origins. However, the average molar Cl-/Na+ ratio (0.85) is lower than the sea-salt one, reflecting a chloride depletion possibly associated with strong acids such as HNO3 and H2SO4. Additionally, the non-sea-salt fraction of sulfate varies between 38 % and 91 %, indicating the presence of other sources. Also, the presence of amino acids and for the first time in cloud waters of sugars clearly indicates that biological activities contribute to the cloud water chemical composition. A significant variability between events is observed in the dissolved organic content (25.5 ± 18.4 mg C L−1), with levels reaching up to 62 mg C L−1. This variability was not similar for all the measured compounds, suggesting the presence of dissimilar emission sources or production mechanisms. For that, a statistical analysis is performed based on back-trajectory calculations using the CAT (Computing Atmospheric Trajectory Tool) model associated with the land cover registry. These investigations reveal that air mass origins and microphysical variables do not fully explain the variability observed in cloud chemical composition, highlighting the complexity of emission sources, multiphasic transfer, and chemical processing in clouds. Even though a minor contribution of VOCs (oxygenated and low-solubility VOCs) to the total dissolved organic carbon (DOC) (0.62 % and 0.06 %, respectively) has been observed, significant levels of biogenic VOC (20 to 180 nmol L−1) were detected in the aqueous phase, indicating the cloud-terrestrial vegetation exchange. Cloud scavenging of VOCs is assessed by measurements obtained in both the gas and aqueous phases and deduced experimental gas-/aqueous-phase partitioning was compared with Henry's law equilibrium to evaluate potential supersaturation or unsaturation conditions. The evaluation reveals the supersaturation of low-solubility VOCs from both natural and anthropogenic sources. Our results depict even higher supersaturation of terpenoids, evidencing a deviation from thermodynamically expected partitioning in the aqueous-phase chemistry in this highly impacted tropical area.

2022 ◽  
Mathieu Lachatre ◽  
Sylvain Mailler ◽  
Laurent Menut ◽  
Arineh Cholakian ◽  
Pasquale Sellitto ◽  

Abstract. Volcanic activity is an important source of atmospheric sulphur dioxide (SO2), which, after conversion into sulphuric acid, induces impacts on, among others, rain acidity, human health, meteorology and the radiative balance of the atmosphere. This work focuses on the conversion of SO2 into sulphates (, S(+VI)) in the mid-tropospheric volcanic plume emitted by the explosive eruption of Mount Etna (Italy) on Apr. 12, 2012, using the CHIMERE chemistry-transport model. Since volcanic plume location and composition depend on several often poorly constrained parameters, using a chemistry-transport model allows us to study the sensitivity of SO2 oxidation to multiple aspects such as volcanic water emissions, transition metal emissions, plume diffusion and plume altitude. Our results show that in the mid-troposphere, two pathways contribute to sulphate production, the oxidation of SO2 by OH in the gaseous phase (70 %), and the aqueous oxidation by O2 catalyzed by Mn2+ and Fe3+ ions (25 %). The oxidation in aqueous phase is the faster process, but in the mid-troposphere, liquid water is scarce, therefore the relative share of gaseous oxidation can be important. After one day in the mid-troposphere, about 0.5 % of the volcanic SO2 was converted to sulphates through the gaseous process. Because of the nonlinear dependency of the kinetics in the aqueous phase to the amount of volcanic water emitted and on the availability of transition metals in the aqueous phase, several experiments have been designed to determine the prominence of different parameters. Our simulations show that during the short time that liquid water remains in the plume, around 0.4 % of sulphates manage to quickly enter the liquid phase. Sensitivity tests regarding the advection scheme have shown that this scheme must be chosen wisely, as dispersion will impact both oxidation pathways explained above.

Muhammad Irshad Baig ◽  
Mehdi Pejman ◽  
Joshua D. Willott ◽  
Alberto Tiraferri ◽  
Wiebe M. de Vos

Sign in / Sign up

Export Citation Format

Share Document