synergistic interaction
Recently Published Documents


TOTAL DOCUMENTS

1005
(FIVE YEARS 185)

H-INDEX

61
(FIVE YEARS 9)

2022 ◽  
Vol 892 ◽  
pp. 161986
Author(s):  
Deepa B. Bailmare ◽  
Chandrasekar M. Subramaniyam ◽  
Sanjay J. Dhoble ◽  
Abhay D. Deshmukh

2022 ◽  
Author(s):  
Khalid Anwar ◽  
Rohit Joshi ◽  
Alejandro Morales ◽  
Gourab Das ◽  
Xinyou Yin ◽  
...  

2021 ◽  
Author(s):  
Zhenning Teng ◽  
Huihui Yu ◽  
Guanqun Wang ◽  
Shuan Meng ◽  
Bohan Liu ◽  
...  

2021 ◽  
Vol 7 (4) ◽  
pp. 285-290
Author(s):  
Lyudmila N. Komarova ◽  
Anzhelika A. Melnikova ◽  
Denis A. Baldov

Proton and carbon beam therapy is currently recognized as the most effective and highly accurate form of radiation therapy for deeply located tumors, including radioresistant ones. This is due to the fact that they have all the advantages of spatial dose distribution and, at the same time, are densely ionizing radiations capable of effectively affecting hypoxic, slow-growing tumors and other neoplasms that are insensitive to traditional types of radiation. It is well known that one of the main methods for treating neoplasms is chemotherapy. The predominant mechanism of action of anti-tumor drugs is the induction of DNA damage with the subsequent impossibility of repair. In our study, we used an anti-tumor antibiotic of the anthracycline series, doxorubicin. The assessment of the potential significance of the synergistic interaction of ionizing radiation with chemical preparations in medical radiology remains an urgent and unresolved problem. It is possible to achieve the maximum effect of the combined action of two agents when they act simultaneously. The phenomenon of synergy can be used to optimize the combined use of radiation and chemotherapy in clinical practice. In this regard, it seems relevant to conduct a study for HeLa cancer cells exposed to ionizing radiation, an antitumor drug, as well as their combination. In the course of the study, results were obtained on the manifestation of the synergistic nature of the agents used, which is of great practical and theoretical importance for understanding the mechanism of the combined effect of ionizing radiation and the chemotherapy drug (doxorubicin). The obtained data can be helpful in optimizing the combined effects in order to achieve maximum synergistic interaction.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Martha I. Natukunda ◽  
Jessica D. Hohenstein ◽  
Chantal E. McCabe ◽  
Michelle A. Graham ◽  
Yunhui Qi ◽  
...  

Abstract Background Pyramiding different resistance genes into one plant genotype confers enhanced resistance at the phenotypic level, but the molecular mechanisms underlying this effect are not well-understood. In soybean, aphid resistance is conferred by Rag genes. We compared the transcriptional response of four soybean genotypes to aphid feeding to assess how the combination of Rag genes enhanced the soybean resistance to aphid infestation. Results A strong synergistic interaction between Rag1 and Rag2, defined as genes differentially expressed only in the pyramid genotype, was identified. This synergistic effect in the Rag1/2 phenotype was very evident early (6 h after infestation) and involved unique biological processes. However, the response of susceptible and resistant genotypes had a large overlap 12 h after aphid infestation. Transcription factor (TF) analyses identified a network of interacting TF that potentially integrates signaling from Rag1 and Rag2 to produce the unique Rag1/2 response. Pyramiding resulted in rapid induction of phytochemicals production and deposition of lignin to strengthen the secondary cell wall, while repressing photosynthesis. We also identified Glyma.07G063700 as a novel, strong candidate for the Rag1 gene. Conclusions The synergistic interaction between Rag1 and Rag2 in the Rag1/2 genotype can explain its enhanced resistance phenotype. Understanding molecular mechanisms that support enhanced resistance in pyramid genotypes could facilitate more directed approaches for crop improvement.


2021 ◽  
Vol 23 (3) ◽  
pp. 215-222
Author(s):  
Aleksey E. Kim ◽  
Evgeniy B. Shustov ◽  
Aleksey V. Lemeshchenko ◽  
Vasily N. Tsygan

The pathophysiological features of the development of maladjustment under mountain-cold conditions as a manifestation of the syndrome of mutual burdening are considered. In this study, contents of various literary sources, characterizing a persons resistance to the effects of a complex of factors under high mountains and polar zones conditions, were analyzed. With the simultaneous exposure to hypoxia and hypothermia from a pathophysiological point of view, intersecting links of terminological paths, often having diametrically opposite dynamics of changes in the characterized concepts, will be significant. Thus, in the terminological mitochondrial pathway of energy metabolism, uncoupling proteins are present, which, to increase the resistance to hypothermia, should be activated to switch the energy metabolism to predominantly use fatty acids. However, hypoxic conditions should be suppressed to maintain the level of adenosine triphosphate acid available for cells. In the terminological tract of compensatory reactions in response to hypoxemia, the volume of pulmonary ventilation is released, which must increase to improve tolerance to hypoxia, which, under mountain-cold conditions, increased heat loss and promote the deterioration of the condition, i.e., tolerance to low temperatures. Under hypoxic and hypothermic conditions, a synergistic interaction can form, which can be manifested by the development of a syndrome of mutual burdening, which will result in a significant decrease in the functional capabilities of the body, result, and productivity. Maladjustment to mountain cold, with maximum probability, will manifest as disorders of the central nervous system, decreased physical performance, depletion of the functional and regulatory reserves of the body, functional immunodeficiency, decreased regenerative potential, and development of endogenous intoxication. With a high degree of probability, a significant synergistic interaction of hypoxia and hypothermia can be found in relation to the indicators of pulmonary ventilation, blood gases (hypercapnia), acidbase balance (gas alkalosis and lactic acidosis), heart rate (tachycardia), blood pressure (hypotension), central venous pressure (increase), blood viscosity (increase) and its coagulability (hypercoagulation), peroxide and free radical oxidation (activation), and protein catabolism (increase). These changes will negatively affect the functional state of specialists performing complex professional tasks in polar latitudes.


Sign in / Sign up

Export Citation Format

Share Document