interfacial polymerization
Recently Published Documents


TOTAL DOCUMENTS

960
(FIVE YEARS 353)

H-INDEX

71
(FIVE YEARS 14)

Desalination ◽  
2022 ◽  
Vol 524 ◽  
pp. 115481
Author(s):  
Ruth Habte Hailemariam ◽  
June-Seok Choi ◽  
Mekdimu Mezemir Damtie ◽  
Hojung Rho ◽  
Kwang-Duck Park ◽  
...  

2022 ◽  
Vol 644 ◽  
pp. 119942
Author(s):  
Ming-Bang Wu ◽  
Hao Ye ◽  
Zhi-Yuan Zhu ◽  
Guo-Tao Chen ◽  
Lu-Lin Ma ◽  
...  

Desalination ◽  
2022 ◽  
Vol 519 ◽  
pp. 115308
Author(s):  
Yuhao Chen ◽  
Haixiang Sun ◽  
Hongbin Zhang ◽  
Kuo Chen ◽  
Dingdong Chai ◽  
...  

2022 ◽  
Vol 641 ◽  
pp. 119905
Author(s):  
Zhiming Zhang ◽  
Hao Yang ◽  
Chenliang Cao ◽  
Yue Liu ◽  
Shuwei Liang ◽  
...  

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Angela Dedvukaj ◽  
Peter Van den Mooter ◽  
Ivo F. J. Vankelecom

Solvent-resistant UV-cured supports consisting of a semi-interpenetrating network of polysulfone (PSf) and cross-linked poly-acrylate were successfully synthesized for the first time using an alternative, non-reprotoxic, and biodegradable solvent. Tamisolve® NxG is a high-boiling, dipolar aprotic solvent with solubility parameters similar to those of dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP), making it an eco-friendly alternative. The support membranes, prepared via UV-curing followed by non-solvent-induced phase inversion, can serve as a universal solvent-resistant support for the synthesis of a broad set of membranes, for which the selective layer can be deposited from any solvent. Parameters such as UV irradiation time and intensity, as well as the concentrations of PSf, penta-acrylate, and photo-initiator in the casting solution were varied to obtain such supports. The characteristics of the resulting supports were investigated in terms of separation performance, hydrophobicity, porosity, degree of acrylate conversion, and pure water flux. The resulting membranes showed improved chemical resistance in solvents such as ethyl acetate, NMP, tetrahydrofuran (THF), and toluene. Solvent-resistant supports with different pore sizes were synthesized and used for the preparation of thin film composite (TFC) membranes to demonstrate their potential. Promising separation performances with Rose Bengal (RB) rejections up to 98% and water permeances up to 1.5 L m−2 h−1 bar−1 were reached with these TFC-membranes carrying a polyamide top layer synthesized via interfacial polymerization.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Qiang Xue ◽  
Kaisong Zhang

Nanomaterials embedded in nanofiltration membranes have become a promising modification technology to improve separation performance. As a novel representation of two-dimensional (2D) nanomaterials, MXene has nice features with a strong negative charge and excellent hydrophilicity. Our previous research showed that MXene nanosheets were added in the aqueous phase, which enhanced the permeselectivity of the membrane and achieved persistent desalination performance. Embedding the nanomaterials into the polyamide layer through the organic phase can locate the nanomaterials on the upper surface of the polyamide layer, and also prevent the water layer around the hydrophilic nanomaterials from hindering the interfacial polymerization reaction. We supposed that if MXene nanosheets were added in the organic phase, MXene nanosheets would have more negative contact sites on the membrane surface and the crosslinking degree would increase. In this study, MXene were dispersed in the organic phase with the help of ultrasound, then MXene nanocomposite nanofiltration membranes were achieved. The prepared MXene membranes obtained enhanced negative charge and lower effective pore size. In the 28-day persistent desalination test, the Na2SO4 rejection of MXene membrane could reach 98.6%, which showed higher rejection compared with MXene embedded in aqueous phase. The results of a long-time water immersion test showed that MXene membrane could still maintain a high salt rejection after being soaked in water for up to 105 days, which indicated MXene on the membrane surface was stable. Besides MXene membrane showed high rejection for high-concentration brine and good mono/divalent salt separation performance in mono/divalent mixed salt solutions. As a part of the study of MXene in nanofiltration membranes, we hoped this research could provide a theoretical guidance for future research in screening different addition methods and different properties.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Pey-Shiuan Wu ◽  
Chia-Hui Lin ◽  
Yi-Ching Kuo ◽  
Chih-Chien Lin

Octyl methoxycinnamate and butyl methoxydibenzoylmethane are organic UV filters with poor photostability and will become photoallergy or phototoxic substance when exposed to ultraviolet radiation. The organic UV filters coated by microcapsules can reduce the photodegradation and avoid direct contact with the skin. Through microencapsulation, the application of UV filters in cosmetics becomes more effective and safer. This study first used the sol-gel method to create organic/inorganic composite UV filter microcapsules. We used sodium alginate as a shell material of the microcapsule to encapsulate UV filters. CaCO3 and tetraethyl orthosilicate (TEOS) were used as cross-linking agents, and sorbitan monooleate (Span 80) and polyoxyethylenesorbitan monooleate (Tween 80) were used as emulsifiers in the interfacial polymerization method for preparation. The results indicated that the microcapsules with 3 g of CaCO3 cross-linking agents had a similar particle size and better entrapment efficiency. The average sizes were 61.0 ± 4.9 μm and 48.6 ± 4.7 μm, and entrapment efficiencies were 75.3 ± 1.9% and 74.8 ± 1.7% for octyl methoxycinnamate and butyl methoxydibenzoylmethane, respectively. Utilizing sodium alginate as a cross-linking agent is better than TEOS due to the higher calcium content. In vitro transdermal delivery analysis showed that the release rate became steady.


Sign in / Sign up

Export Citation Format

Share Document