Preparation and catalytic performance of TS-2 zeolite membrane

Author(s):  
Mei-hua Zhu ◽  
Libin Chen ◽  
Wenjuan Ding ◽  
Lingling Zou ◽  
Ting Wu ◽  
...  
Membranes ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 41
Author(s):  
Wenjuan Ding ◽  
Sitong Xiang ◽  
Fei Ye ◽  
Tian Gui ◽  
Yuqin Li ◽  
...  

Dense and good catalytic performance TS-1 zeolite membranes were rapidly prepared on porous mullite support by secondary hydrothermal synthesis. The properties of seed crystals were very important for the preparation of high-catalytic performance TS-1 zeolite membranes. Influences of seed crystals (Ti/Si ratios, size, morphology, and zeolites concentration of the seed suspension) on the growth and catalytic property of TS-1 zeolite membranes were investigated in details. High Ti/Si ratio, medium-size, and morphology of the seed crystals were critical for preparing the high-performance TS-1 zeolite membrane. Compared with the bi-layer TS-1 zeolite membrane (inner and outer of the mullite tube), the mono-layer TS-1 zeolite membrane had a better catalytic performance for Isopropanol IPA oxidation with H2O2. When the Ti/Si ratio, size, and morphology of the TS-1 zeolites were 0.030, 300 nm, ellipsoid, and the zeolites concentration of the seed suspension was 5%, the IPA conversion, and flux through the TS-1 zeolite membrane were 98.23% and 2.58 kg·m−2·h−1, respectively.


2018 ◽  
Vol 5 (8) ◽  
pp. 180587 ◽  
Author(s):  
Xiaotong Zhang ◽  
Ying Yan

Catalytic combustion of isopropanol in the structured fixed-bed reactor was investigated over Co–ZSM-5 zeolite membrane catalysts. Firstly, ZSM-5 zeolite membrane catalysts with different Si/Al ratios were coated onto the surface of stainless steel fibres via secondary growth method and wet lay-up paper-making method. Then, cobalt oxides were loaded onto the zeolite membranes by impregnation method. The performance of catalytic combustion of isopropanol was conducted over the prepared zeolite membrane catalysts, and the experimental results showed that the catalyst with infinite Si/Al ratio has the highest catalytic activity for the combustion with the lowest T 90 of isopropanol (285°C). Finally, the effects of bed structure, feed concentration, gas hourly space velocity and reaction temperature on the catalytic performance were investigated to analyse the kinetics of isopropanol over the catalyst with infinite Si/Al ratio in the structured fixed-bed reactor. The results showed that the longer residence time could cause higher reaction contact efficiency of isopropanol combustion. T 90 of isopropanol can be dramatically decreased by 105°C in the fixed-bed reactor packed with Co–ZSM-5 zeolite membrane catalysts, compared to the fixed-bed reactor packed with granular catalyst.


2017 ◽  
Vol 32 (6) ◽  
pp. 631 ◽  
Author(s):  
GUO Yu ◽  
LI Dong-Xin ◽  
WU Hong-Mei ◽  
JIN Yu-Jia ◽  
ZHOU Li-Dai ◽  
...  

2018 ◽  
Vol 268 ◽  
pp. 84-87 ◽  
Author(s):  
Meihua Zhu ◽  
Yongsheng Liu ◽  
Yongkang Yao ◽  
Jiamin Jiang ◽  
Fei Zhang ◽  
...  

2019 ◽  
Vol 9 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Zhao-Meng Wang ◽  
Li-Juan Liu ◽  
Bo Xiang ◽  
Yue Wang ◽  
Ya-Jing Lyu ◽  
...  

The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.


2020 ◽  
Vol 8 (35) ◽  
pp. 18207-18214
Author(s):  
Dongbo Jia ◽  
Lili Han ◽  
Ying Li ◽  
Wenjun He ◽  
Caichi Liu ◽  
...  

A novel, rational design for porous S-vacancy nickel sulfide catalysts with remarkable catalytic performance for alkaline HER.


2019 ◽  
Author(s):  
M. Alexander Ardagh ◽  
Manish Shetty ◽  
Anatoliy Kuznetsov ◽  
Qi Zhang ◽  
Phillip Christopher ◽  
...  

Catalytic enhancement of chemical reactions via heterogeneous materials occurs through stabilization of transition states at designed active sites, but dramatically greater rate acceleration on that same active site is achieved when the surface intermediates oscillate in binding energy. The applied oscillation amplitude and frequency can accelerate reactions orders of magnitude above the catalytic rates of static systems, provided the active site dynamics are tuned to the natural frequencies of the surface chemistry. In this work, differences in the characteristics of parallel reactions are exploited via selective application of active site dynamics (0 < ΔU < 1.0 eV amplitude, 10<sup>-6</sup> < f < 10<sup>4</sup> Hz frequency) to control the extent of competing reactions occurring on the shared catalytic surface. Simulation of multiple parallel reaction systems with broad range of variation in chemical parameters revealed that parallel chemistries are highly tunable in selectivity between either pure product, even when specific products are not selectively produced under static conditions. Two mechanisms leading to dynamic selectivity control were identified: (i) surface thermodynamic control of one product species under strong binding conditions, or (ii) catalytic resonance of the kinetics of one reaction over the other. These dynamic parallel pathway control strategies applied to a host of chemical conditions indicate significant potential for improving the catalytic performance of many important industrial chemical reactions beyond their existing static performance.


2014 ◽  
Vol 29 (2) ◽  
pp. 124-130 ◽  
Author(s):  
Yu-Cheng DU ◽  
Guang-Wei ZHENG ◽  
Qi MENG ◽  
Li-Ping WANG ◽  
Hai-Guang FAN ◽  
...  

2010 ◽  
Vol 31 (4) ◽  
pp. 429-434
Author(s):  
Ming ZHAO ◽  
Hairong WANG ◽  
Shanhu CHEN ◽  
Yanling YAO ◽  
Maochu GONG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document