fixed bed reactor
Recently Published Documents


TOTAL DOCUMENTS

2130
(FIVE YEARS 525)

H-INDEX

67
(FIVE YEARS 12)

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
Celia Alvarez-Gonzalez ◽  
Victoria E. Santos ◽  
Miguel Ladero ◽  
Juan M. Bolivar

Cellulose saccharification to glucose is an operation of paramount importance in the bioenergy sector and the chemical and food industries, while glucose is a critical platform chemical in the integrated biorefinery. Among the cellulose degrading enzymes, β-glucosidases are responsible for cellobiose hydrolysis, the final step in cellulose saccharification, which is usually the critical bottleneck for the whole cellulose saccharification process. The design of very active and stable β-glucosidase-based biocatalysts is a key strategy to implement an efficient saccharification process. Enzyme immobilization and reaction engineering are two fundamental tools for its understanding and implementation. Here, we have designed an immobilized-stabilized solid-supported β−glucosidase based on the glyoxyl immobilization chemistry applied in porous solid particles. The biocatalyst was stable at operational temperature and highly active, which allowed us to implement 25 °C as working temperature with a catalyst productivity of 109 mmol/min/gsupport. Cellobiose degradation was implemented in discontinuous stirred tank reactors, following which a simplified kinetic model was applied to assess the process limitations due to substrate and product inhibition. Finally, the reactive process was driven in a continuous flow fixed-bed reactor, achieving reaction intensification under mild operation conditions, reaching full cellobiose conversion of 34 g/L in a reaction time span of 20 min.


2022 ◽  
Vol 9 ◽  
Author(s):  
Sichao Cheng ◽  
Su Cheun Oh ◽  
Mann Sakbodin ◽  
Limei Qiu ◽  
Yuxia Diao ◽  
...  

Direct non-oxidative methane conversion (DNMC) converts methane (CH4) in one step to olefin and aromatic hydrocarbons and hydrogen (H2) co-product. Membrane reactors comprising methane activation catalysts and H2-permeable membranes can enhance methane conversion by in situ H2 removal via Le Chatelier's principle. Rigorous description of H2 kinetic effects on both membrane and catalyst materials in the membrane reactor, however, has been rarely studied. In this work, we report the impact of hydrogen activation by hydrogen-permeable SrCe0.8Zr0.2O3−δ (SCZO) perovskite oxide material on DNMC over an iron/silica catalyst. The SCZO oxide has mixed ionic and electronic conductivity and is capable of H2 activation into protons and electrons for H2 permeation. In the fixed-bed reactor packed with a mixture of SCZO oxide and iron/silica catalyst, stable and high methane conversion and low coke selectivity in DNMC was achieved by co-feeding of H2 in methane stream. The characterizations show that SCZO activates H2 to favor “soft coke” formation on the catalyst. The SCZO could absorb H2in situ to lower its local concentration to mitigate the reverse reaction of DNMC in the tested conditions. The co-existence of H2 co-feed, SCZO oxide, and DNMC catalyst in the present study mimics the conditions of DNMC in the H2-permeable SCZO membrane reactor. The findings in this work offer the mechanistic understanding of and guidance for the design of H2-permeable membrane reactors for DNMC and other alkane dehydrogenation reactions.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 347
Author(s):  
Cong Yang ◽  
Yifei Wang ◽  
Abdullatif Alfutimie

To support a sustainable energy development, CO2 reduction for carbon neutralization and water-splitting for hydrogen economy are two feasible technical routes, both of which require a significant input of renewable energies. To efficiently store renewable energies, secondary batteries will be applied in great quantity, so that a considerable amount of energy needs to be invested to eliminate the waste battery electrolyte pollution caused by heavy metals including Cu2+, Zn2+ and Pb2+. To reduce this energy consumption, the removal behaviors of these ions by using clinoptilolite and zeolite A under 5, 7 and 10 BV h−1 in a fixed-bed reactor were investigated. The used zeolites were then regenerated by a novel NH4Cl solution soaking, coupled with the ultrasonication method. Further characterizations were carried out using scanning electron microscopy, N2 adsorption and desorption test, and wide-angle X-ray diffraction. The adsorption breakthrough curves revealed that the leaching preference of clinoptilolite was Pb2+ > Cu2+ > Zn2+, while the removal sequence for zeolite A was Zn2+ > Cu2+ > Pb2+. The maximum removal percentage of Zn2+ ions for clinoptilolite under 5 BV h−1 was 21.55%, while it was 83.45% for zeolite A. The leaching ability difference was also discussed combining with the characterization results. The fact that unit cell stayed the same before and after the regeneration treatment approved the efficacy of the regeneration method, which detached most of the ions while doing little change to both morphology and crystallinity of the zeolites. By evaluating the pH and conductivity changes, the leaching mechanisms by adsorption and ion exchange were further studied.


Author(s):  
Andrew C. Dyer ◽  
Mohamad A. Nahil ◽  
Paul T. Williams

AbstractBiomass and waste polystyrene plastic (ratio 1:1) were co-pyrolysed followed by catalysis in a two-stage fixed bed reactor system to produce upgraded bio-oils for production of liquid fuel and aromatic chemicals. The catalysts investigated were ZSM-5 impregnated with different metals, Ga, Co, Cu, Fe and Ni to determine their influence on bio-oil upgrading. The results showed that the different added metals had a different impact on the yield and composition of the product oils and gases. Deoxygenation of the bio-oils was mainly via formation of CO2 and CO via decarboxylation and decarbonylation with the Ni–ZSM-5 and Co–ZSM-5 catalysts whereas higher water yield and lower CO2 and CO was obtained with the ZSM-5, Ga–ZSM-5, Cu–ZSM-5 and Fe–ZSM-5 catalysts suggesting hydrodeoxygenation was dominant. Compared to the unmodified ZSM-5, the yield of single-ring aromatic compounds in the product oil was increased for the Co–ZSM-5, Cu–ZSM-5, Fe–ZSM-5 and Ni–ZSM-5 catalysts. However, for the Ga–ZSM-5 catalyst, single-ring aromatic compounds were reduced, but the highest yield of polycyclic aromatic hydrocarbons was produced. A higher biomass to polystyrene ratio (4:1) resulted in a markedly lower oil yield with a consequent increased yield of gas.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Pavel Čičmanec ◽  
Jiří Kotera ◽  
Jan Vaculík ◽  
Roman Bulánek

The catalytic activity of zeolites is often related to their acid–base properties. In this work, the relationship between the value of apparent activation energy of ethanol dehydration, measured in a fixed bed reactor and by means of a temperature-programmed surface reaction (TPSR) depending on the amount of ethanol in the zeolite lattice and the value of activation energy of H/D exchange as a measure of acid–base properties of MFI and CHA zeolites, was studied. Tests in a fixed bed reactor were unable to provide reliable reaction kinetics data due to internal diffusion limitations and rapid catalyst deactivation. Only the TPSR method was able to provide activation energy values comparable to the activation energy values obtained from the H/D exchange rate measurements. In addition, for CHA zeolite, it has been shown that the values of ethanol dehydration activation energies depend on the amount of ethanol in the CHA framework, and this effect can be attributed to the substrate clustering effects supporting the deprotonation of zeolite Brønsted centers.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Chirag Vibhakar ◽  
R. S. Sabeenian ◽  
S. Kaliappan ◽  
Pandurang Y. Patil ◽  
Pravin P. Patil ◽  
...  

Two totally waste products, agricultural residues and mixed plastic wastes collected from domestic and industrial sectors, are used in this study for the recovery of energy rich biofuel and value-added chemicals. The copyrolysis experiments using fixed bed reactor are conducted in order to analyse the synergetic effects. The experimental works are carried out with different proportion of mixed plastics blended with agricultural residues. The reaction temperature and biomass-to-waste plastics ratio on product distributions are studied and addressed. The thermogravimetric analysis conducted at different temperatures clearly distinguished the pyrolysis behaviours of biomass and plastics. The positive synergistic effects defined as higher yield of volatiles compared to predicted yield for bio-oil were identified at particular mixing ratio. Both biomass wastes and plastic wastes show optimal performance of 60.42 wt% oil yield at 60% addition of waste plastics. The oil products obtained under favourable conditions have a higher heating value compared to the oil obtained from biomass pyrolysis. The GC-MS study confirmed that the interaction between biomass and plastics during copyrolysis resulted in decreased oxygenated contents in the oil products.


2022 ◽  
Vol 156 ◽  
pp. 106316
Author(s):  
Xiang Guo ◽  
Huijun Yang ◽  
Terrence Wenga ◽  
Rui Zhang ◽  
Bin Liu ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
pp. 032-038
Author(s):  
J Sani ◽  
T Abubakar

Pyrolysis of the algae (chlorophyceac) was carried out using fixed bed reactor at 4500C. The mass balance of the pyrolysed algae were liquid fraction (oil) (10%), gaseous product (11%), solid product (char) (79%) and extent of conversion (21%. The proximate analysis of powdered sample was carried out in accordance with the official method of analytical chemistry (AOAC). The moisture content, ash content, volatile matter and fixed carbon determined were 3 + 0.33, 70.3 + 0.5, 6.3 + 0.3 and 20.2 + 0.07 respectively. The result obtained indicate that algae (chlorophyceae) could be used as feedstock for generation of pyrolysed oil which could probably be upgraded to fuel for both domestic and industrial purposes.


Sign in / Sign up

Export Citation Format

Share Document