Investigation of waste PCB leach residue as a reducing agent in smelting processes

2020 ◽  
Vol 156 ◽  
pp. 106489
Author(s):  
Desmond Attah-Kyei ◽  
Guven Akdogan ◽  
Christie Dorfling ◽  
Johan Zietsman ◽  
Daniel Lindberg ◽  
...  
Keyword(s):  
INEOS OPEN ◽  
2020 ◽  
Vol 3 ◽  
Author(s):  
O. I. Afanasyev ◽  
◽  
D. Chusov ◽  

Carbon monoxide is a unique reducing agent that is only gaining popularity in organic chemistry. This review highlights the main approaches to the application of CO as a reducing agent, summarizes and critically analyzes the key trends in this field, and describes the current development prospects. Potentially the most selective and efficient route for the realization of these processes is demonstrated.


1967 ◽  
Vol 56 (1_Suppl) ◽  
pp. S62
Author(s):  
M. Wenzel ◽  
K. Pollow
Keyword(s):  

2018 ◽  
Author(s):  
Chandan Dey ◽  
Ronny Neumann

<p>A manganese substituted Anderson type polyoxometalate, [MnMo<sub>6</sub>O<sub>24</sub>]<sup>9-</sup>, tethered with an anthracene photosensitizer was prepared and used as catalyst for CO<sub>2</sub> reduction. The polyoxometalate-photosensitizer hybrid complex, obtained by covalent attachment of the sensitizer to only one face of the planar polyoxometalate, was characterized by NMR, IR and mass spectroscopy. Cyclic voltammetry measurements show a catalytic response for the reduction of carbon dioxide, thereby suggesting catalysis at the manganese site on the open face of the polyoxometalate. Controlled potentiometric electrolysis showed the reduction of CO<sub>2</sub> to CO with a TOF of ~15 sec<sup>-1</sup>. Further photochemical reactions showed that the polyoxometalate-anthracene hybrid complex was active for the reduction of CO<sub>2</sub> to yield formic acid and/or CO in varying amounts dependent on the reducing agent used. Control experiments showed that the attachment of the photosensitizer to [MnMo<sub>6</sub>O<sub>24</sub>]<sup>9-</sup> is necessary for photocatalysis.</p><div><br></div>


Author(s):  
Walber Ronconi dos Santos ◽  
Edson Soares ◽  
Renato Siqueira

2020 ◽  
Vol 12 (3) ◽  
pp. 255-264
Author(s):  
Yu. V. Dubinin ◽  
N. A. Tsereshko ◽  
V. A. Yakovlev
Keyword(s):  

1990 ◽  
Vol 55 (8) ◽  
pp. 2001-2007
Author(s):  
Gurusamy Manivannan ◽  
Pichai Maruthamuthu

Aqueous thermal polymerization of acrylonitrile (AN) initiated by peroxomonosulphate (HSO5-, PMS)-thiolactic acid (TLA) and PMS-thiomalic acid (TMA) redox systems has been carried out in the temperature range 30-50 °C. The effect of concentration of monomer, initiator, reducing agent, H+, and ionic strength on rate of polymerization, Rp, has been investigated under deaerated conditions. The Rp has been found to depend on, Rp ~ [AN]01.5 [PMS]0.5 [TLA]0.5 in PMS-TLA system and, Rp ~ [AN]02.0 [PMS]1.0 [TMA]0 in PMS-TMA system. The degree of polymerization (Xn) values and thermodynamic parameters have been evaluated. Suitable reaction scheme has been proposed and expressions for Rp and Xn have been obtained.


Sign in / Sign up

Export Citation Format

Share Document