Parametric study and speciation analysis of rare earth precipitation using oxalic acid in a chloride solution system

2022 ◽  
Vol 176 ◽  
pp. 107352
Author(s):  
Ahmad Nawab ◽  
Xinbo Yang ◽  
Rick Honaker
2014 ◽  
Vol 1081 ◽  
pp. 38-42
Author(s):  
Zhen Feng Wang ◽  
Wen Yuan Wu ◽  
Xue Bian ◽  
Shou Feng Xue

With lanthanum chloride solution as raw material, and use the hydrogen peroxide of clean and pollution-freeobtained from oxidation reaction as auxiliary reagent, and with the carrier gas together form spray pyrolysis to obtain lanthanum oxide. On the one hand, in the hydrogen peroxide system, the temperature of direct pyrolysis reaction of lanthanum chloride solution decreased obviously, The reaction temperature is decreased from 1280°C to 1000°C or less. That reduce the energy consumption and simplify the requirements of pyrolysis equipment technology. The production process does not use NH3.H2O and NaOH to precipitate. It does not produce the traditional process of NH4+, Na+ to pollute water. It can greatly reduce the damage to the environment, and can product with high yield, high purity of the rare earth oxide. This method not only applies to the pyrolysis of the rare earth chloride solution, also applies to metal chloride solution, such as FeCl3, AlCl3, NiCl2. It was shown that the reaction temperature has been effectively reduced, VLaCl3: VH2O2 with 1: 1.5 can get high purity of La2O3.


2020 ◽  
Vol 197 ◽  
pp. 105372
Author(s):  
Deliang Meng ◽  
Qiuyue Zhao ◽  
Xijuan Pan ◽  
Ting-an Zhang

1920 ◽  
Vol 3 (1) ◽  
pp. 85-106 ◽  
Author(s):  
Jacques Loeb

1. This paper contains experiments on the influence of acids and alkalies on the osmotic pressure of solutions of crystalline egg albumin and of gelatin, and on the viscosity of solutions of gelatin. 2. It was found in all cases that there is no difference in the effects of HCl, HBr, HNO3, acetic, mono-, di-, and trichloracetic, succinic, tartaric, citric, and phosphoric acids upon these physical properties when the solutions of the protein with these different acids have the same pH and the same concentration of originally isoelectric protein. 3. It was possible to show that in all the protein-acid salts named the anion in combination with the protein is monovalent. 4. The strong dibasic acid H2SO4 forms protein-acid salts with a divalent anion SO4 and the solutions of protein sulfate have an osmotic pressure and a viscosity of only half or less than that of a protein chloride solution of the same pH and the same concentration of originally isoelectric protein. Oxalic acid behaves essentially like a weak dibasic acid though it seems that a small part of the acid combines with the protein in the form of divalent anions. 5. It was found that the osmotic pressure and viscosity of solutions of Li, Na, K, and NH4 salts of a protein are the same at the same pH and the same concentration of originally isoelectric protein. 6. Ca(OH)2 and Ba(OH)2 form salts with proteins in which the cation is divalent and the osmotic pressure and viscosity of solutions of these two metal proteinates are only one-half or less than half of that of Na proteinate of the same pH and the same concentration of originally isoelectric gelatin. 7. These results exclude the possibility of expressing the effect of different acids and alkalies on the osmotic pressure of solutions of gelatin and egg albumin and on the viscosity of solutions of gelatin in the form of ion series. The different results of former workers were probably chiefly due to the fact that the effects of acids and alkalies on these proteins were compared for the same quantity of acid and alkali instead of for the same pH.


2014 ◽  
Vol 161 (12) ◽  
pp. C527-C534 ◽  
Author(s):  
Nguyen Dang Nam ◽  
Motilal Mathesh ◽  
Bruce Hinton ◽  
Mike J. Y. Tan ◽  
Maria Forsyth

Sign in / Sign up

Export Citation Format

Share Document