scholarly journals Immunohistochemical localization and expression of TRPs in rat submandibular gland development

2017 ◽  
Vol 145 ◽  
pp. S155
Author(s):  
Hitoshi Yamamoto ◽  
Motoya Fujiseki ◽  
Masahito Yamamoto ◽  
Sobhan Ubaidus ◽  
Takashi Shinomiya ◽  
...  
Life Sciences ◽  
1975 ◽  
Vol 16 (5) ◽  
pp. 789-790
Author(s):  
Torill Berg Ørstavik ◽  
Per Brandtzaeg ◽  
Kjell Nustad ◽  
Kaare Gautvik

1992 ◽  
Vol 40 (1) ◽  
pp. 83-92 ◽  
Author(s):  
T Berg ◽  
I Wassdal ◽  
K Sletten

The rat submandibular gland contains several members of the kallikrein family. In the present study we purified and raised an antiserum against one of these enzymes, i.e., esterase B, which was first described by Khullar et al. in 1986. N-terminal amino acid analysis revealed complete homology between esterase B and the kallikrein family gene RSKG-7. For characterization of the antiserum, flat-bed isoelectrofocusing with immunoblotting was superior to immunoelectrophoresis and double immunodiffusion in detecting and identifying crossreacting proteins. This was due to the fact that kallikrein-like enzymes were readily separated by isoelectrofocusing, and immunoreactivity was easily detected by the sensitive peroxidase-anti-peroxidase staining after blotting onto nitrocellulose membrane. Immunohistochemical controls were carried out accordingly, including homologous as well as crossreacting antigens. In the submandibular gland, esterase B was detected exclusively in all granular convoluted tubular cells, co-localized with tissue kallikrein and tonin. Some staining was also observed in striated duct cells; however, this staining reaction was induced by cross-reactivity with kallikrein, since staining was abolished by addition of kallikrein as well as esterase B to the primary antiserum. It was therefore concluded that like tonin and antigen gamma, but unlike kallikrein, esterase B was not detected in the striated ducts of the submandibular, parotid, or sublingual glands. This separation in anatomic distribution between esterase B and kallikrein may indicate that prokallikrein activation is not the only biological function of esterase B.


1988 ◽  
Vol 36 (9) ◽  
pp. 1139-1145 ◽  
Author(s):  
D C Winston ◽  
R A Hennigar ◽  
S S Spicer ◽  
J R Garrett ◽  
B A Schulte

The enzyme Na+,K+-ATPase was localized immunohistochemically in major salivary glands of mouse, rat, and human and in exorbital lacrimal glands of the rodents. Immunoreactive Na+,K+-ATPase was abundant in the basolateral membranes of all epithelial cells lining striated and intra- and interlobular ducts of all glands. Reactivity of intercalated ducts varied among gland type and species. Cells lining granular ducts in rodent submandibular gland showed a heterogeneous staining pattern in rat but stained homogeneously in mouse. Secretory cells varied greatly in their content of immunoreactive Na+,K+-ATPase. As with all duct cells, staining was present only at the basolateral surface and was never observed at the luminal surface of reactive secretory cells. Mucous cells failed to show any reactivity in any gland examined. Serous cells showed a gradient of immunostaining intensity ranging from strongly positive in demilunes of human sublingual gland to negative in rat submandibular gland and lacrimal glands of rats and mice. The presence of basolaterally localized Na+,K+-ATPase in most serous cells but not in mucous cells suggests that the enzyme contributes to the ion and water content of copious, low-protein serous secretions. The intense immunostaining of cells in most if not all segments of the duct system supports the idea that the ducts are involved with modification of the primary saliva, and extends this concept to include all segments of the duct system.


Author(s):  
L.S. Cutler

Many studies previously have shown that the B-adrenergic agonist isoproterenol and the a-adrenergic agonist norepinephrine will stimulate secretion by the adult rat submandibular (SMG) and parotid glands. Recent data from several laboratories indicates that adrenergic agonists bind to specific receptors on the secretory cell surface and stimulate membrane associated adenylate cyclase activity which generates cyclic AMP. The production of cyclic AMP apparently initiates a cascade of events which culminates in exocytosis. During recent studies in our laboratory it was observed that the adenylate cyclase activity in plasma membrane fractions derived from the prenatal and early neonatal rat submandibular gland was retractile to stimulation by isoproterenol but was stimulated by norepinephrine. In addition, in vitro secretion studies indicated that these prenatal and neonatal glands would not secrete peroxidase in response to isoproterenol but would secrete in response to norepinephrine. In contrast to these in vitro observations, it has been shown that the injection of isoproterenol into the living newborn rat results in secretion of peroxidase by the SMG (1).


1989 ◽  
Vol 416 (1) ◽  
pp. 503-515 ◽  
Author(s):  
D L Bovell ◽  
H Y Elder ◽  
J D Pediani ◽  
S M Wilson

Sign in / Sign up

Export Citation Format

Share Document