Photophysical study of 6-amino-3-methyl-4-(4-nitrophenyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile and estimation of ground-state and singlet excited-state dipole moments by solvatochromic approaches

2016 ◽  
Vol 222 ◽  
pp. 828-835 ◽  
Author(s):  
Rekha Kumari ◽  
Anitha Varghese ◽  
Louis George ◽  
Akshaya K.B.
2008 ◽  
Vol 71 (4) ◽  
pp. 1355-1359 ◽  
Author(s):  
R. Dhanya ◽  
V.C. Kishore ◽  
C. Sudha Kartha ◽  
K. Sreekumar ◽  
Rani Joseph

2018 ◽  
Vol 6 (2) ◽  
pp. 190
Author(s):  
Abimbola Ogunsipe

A semi-empirical determination of ground and excited state dipole moments of zinc phthalocyanine (ZnPc) from solvatochromic shifts is hereby presented. The ratio of the excited- and ground-state dipole moments of ZnPc ( ) was estimated by a combination of the Bakshiev and the Kawski-Chamma-Viallet’s equations, while the difference in the excited- and ground-state dipole moments (Dm) was estimated usingthe molecular-microscopic solvent polarity parameters ( ), alongside the Stokes’ shifts (Dῡ) in the various solvents. The dipole moment of ZnPc is significantly higher in the excited singlet state (me = 3.12 D) than in the ground state (mg = 1.50 D). Obviously charge separation is greater in the excited state of ZnPc than in its ground state.  


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kinfe Woldegiorges ◽  
Abebe Belay ◽  
Alemu Kebede ◽  
Tamirat Abebe

Levofloxacin (LVF) and norfloxacin (NRF) are a group of fluoroquinolone antibiotics, broad spectrum used to treat various infections caused by many bacterial species. The drugs contain functional groups which control the type and degree of interaction with different solvents. In this research, the ground and excited state dipole moments of LVF and NRF drugs were estimated using solvatochromic effects and computational work. The dipole moments were estimated from absorption and emission spectra in polar and nonpolar solvents using Bakhshiev’s, Kawski–Chamma–Viallet, Lippert–Mataga, and Reichardt models. The results indicated the emission spectra are more strongly affected by solvent polarity than the absorption spectra. The calculated excited state dipole moment is larger than that of the ground state, indicating that the probe compounds are significantly more polarized in the excited state than in the ground state. From computational work, the HOMO-LUMO energy band gap, the dipole moments, electron charge density distribution, and oscillator strength were determined using the semiempirical MP6 method, DFT-B3LYP-6-31G, and DFT-B3LYP-3-21G employing Gaussian 09 software. In general, larger dipole moments were obtained by computation rather than from experiments due to the absence of solvent effects.


1999 ◽  
Vol 54 (6-7) ◽  
pp. 379-381 ◽  
Author(s):  
A. Kawski

Abstract The dipole moments in the ground-and excited-state of the fluorescence probe 6-propionyl-2-(dim-ethylamino)naphthalene (PRODAN) are determined from solvatochromic shifts to μe = 2.1 D and μg = 6.4 D. These values concern the free molecule. In the first excited singlet state the dipole moment is only 3 times greater than in the ground state.


Sign in / Sign up

Export Citation Format

Share Document