spectral shifts
Recently Published Documents


TOTAL DOCUMENTS

474
(FIVE YEARS 53)

H-INDEX

41
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Ross Jones ◽  
Mari-Carmen Pineda ◽  
Heidi M. Luter ◽  
Rebecca Fisher ◽  
David Francis ◽  
...  

Hyper-spectral and multi-spectral light sensors were used to examine the effects of elevated suspended sediment concentration (SSC) on the quantity and quality (spectral changes) of underwater downwelling irradiance in the turbid-zone coral reef communities of the inner, central Great Barrier Reef (GBR). Under elevated SSCs the shorter blue wavelengths were preferentially attenuated which together with attenuation of longer red wavelengths by pure water shifted the peak in the underwater irradiance spectrum ~100 nm to the less photosynthetically useful green-yellow waveband (peaking at ~575 nm). The spectral changes were attributed to mineral and detrital content of the terrestrially-derived coastal sediments as opposed to chromophoric (coloured) dissolved organic matter (CDOM). A simple blue to green (B/G, λ455:555 nm) ratio was shown to be useful in detecting sediment (turbidity) related decreases in underwater light as opposed to those associated with clouds which acted as neutral density filters. From a series of vertical profiles through turbid water, a simple, multiple component empirical optical model was developed that could accurately predict the light reduction and associated spectral changes as a function of SSC and water depth for a turbid-zone coral reef community of the inner GBR. The relationship was used to assess the response of a light sensitive coral, Pocillopora verrucosa in a 28-d exposure laboratory-based exposure study to a daily light integral of 1 or 6 mol quanta m2. PAR with either a broad spectrum or a green-yellow shifted spectrum. Light reduction resulted in a loss of the algal symbionts (zooxanthellae) of the corals (bleaching) and significant reduction in growth and lipid content. The 6 mol quanta m2 d−1 PAR treatment with a green-yellow spectrum also resulted in a reduction in the algal density, Chl a content per cm2, lipids and growth compared to the same PAR daily light integral under a broad spectrum. Turbid zone coral reef communities are naturally light limited and given the frequency of sediment resuspension events that occur, spectral shifts are a common and previously unrecognised circumstance. Dedicated underwater light monitoring programs and further assessment of the spectral shifts by suspended sediments are essential for contextualising and further understanding the risk of enhanced sediment run-off to the inshore turbid water communities.


Author(s):  
D. K. MUIRHEAD ◽  
L. KEDAR ◽  
A. SCHITO ◽  
S. CORRADO ◽  
C. E. BOND ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Artyom Assadillayev ◽  
Tatsuki Hinamoto ◽  
Minoru Fujii ◽  
Hiroshi Sugimoto ◽  
Søren Raza

Abstract Tunable high-refractive-index nanostructures are highly desired for realizing photonic devices with a compact footprint. By harnessing the large thermo-optic effect in silicon, we show reversible and wide thermal tuning of both the far- and near-fields of Mie resonances in isolated silicon nanospheres in the visible range. We perform in situ heating in a transmission electron microscope and electron energy-loss spectroscopy to show that the Mie resonances exhibit large spectral shifts upon heating. We leverage the spectral shifts to demonstrate near-field tuning between different Mie resonances. By combining electron energy-loss spectroscopy with energy-dispersive X-ray analysis, we show a reversible and stable operation of single silicon nanospheres up to a temperature of 1073 K. Our results demonstrate that thermal actuation offers dynamic near-field tuning of Mie resonances, which may open up applications in tunable nonlinear optics, Raman scattering, and light emission.


2021 ◽  
Author(s):  
Arundhati Deshmukh ◽  
Niklas Geue ◽  
Nadine Bradbury ◽  
Timothy Atallah ◽  
Chern Chuang ◽  
...  

Molecular aggregates with long-range excitonic couplings have drastically different photophysical properties compared to their monomer counterparts. From Kasha’s model for 1-dimensional systems, positive or negative excitonic couplings lead to blue or red shifted optical spectra with respect to the monomers, labelled H-and J-aggregates respectively. The overall excitonic couplings in higher dimensional systems are much more complicated and cannot be simply classified from their spectral shifts alone. Here, we provide a unified classification for extended 2D aggregates using temperature dependent peak shifts, thermal broadening and quantum yields. We discuss the examples of six 2D aggregates with J-like absorption spectra but quite drastic changes quantum yields and superradiance. We find the origin of the differences is, in fact, a different excitonic band structure where the bright state is lower energy than the monomer but still away from the band edge. We call this an ‘I-aggregate’. Our results provide a description of the complex excitonic behaviors that cannot be explained solely on Kasha’s model. Further, such properties can be tuned with the packing geometries within the aggregates providing supramolecular pathways for controlling them. This will allow for precise optimizations of aggregate properties in their applications across the areas of optoelectronics, photonics, excitonic energy transfer, and shortwave infrared technologies.


2021 ◽  
Author(s):  
Arundhati Deshmukh ◽  
Niklas Geue ◽  
Nadine Bardbury ◽  
Timothy Atallah ◽  
Chern Chuang ◽  
...  

Molecular aggregates with long-range excitonic couplings have drastically different photophysical properties compared to their monomer counterparts. From Kasha’s model for 1-dimensional systems, positive or negative excitonic couplings lead to blue or red shifted optical spectra with respect to the monomers, labelled H-and J-aggregates respectively. The overall excitonic couplings in higher dimensional systems are much more complicated and cannot be simply classified from their spectral shifts alone. Here, we provide a unified classification for extended 2D aggregates using temperature dependent peak shifts, thermal broadening and quantum yields. We discuss the examples of six 2D aggregates with J-like absorption spectra but quite drastic changes quantum yields and superradiance. We find the origin of the differences is, in fact, a different excitonic band structure where the bright state is lower energy than the monomer but still away from the band edge. We call this an ‘I-aggregate’. Our results provide a description of the complex excitonic behaviors that cannot be explained solely on Kasha’s model. Further, such properties can be tuned with the packing geometries within the aggregates providing supramolecular pathways for controlling them. This will allow for precise optimizations of aggregate properties in their applications across the areas of optoelectronics, photonics, excitonic energy transfer, and shortwave infrared technologies.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6154
Author(s):  
Daniel C. Sweeney ◽  
Dennis M. Sweeney ◽  
Christian M. Petrie

Optical backscatter reflectometry (OBR) is an interferometric technique that can be used to measure local changes in temperature and mechanical strain based on spectral analyses of backscattered light from a singlemode optical fiber. The technique uses Fourier analyses to resolve spectra resulting from reflections occurring over a discrete region along the fiber. These spectra are cross-correlated with reference spectra to calculate the relative spectral shifts between measurements. The maximum of the cross-correlated spectra—termed quality—is a metric that quantifies the degree of correlation between the two measurements. Recently, this quality metric was incorporated into an adaptive algorithm to (1) selectively vary the reference measurement until the quality exceeds a predefined threshold and (2) calculate incremental spectral shifts that can be summed to determine the spectral shift relative to the initial reference. Using a graphical (network) framework, this effort demonstrated the optimal reconstruction of distributed OBR measurements for all sensing locations using a maximum spanning tree (MST). By allowing the reference to vary as a function of both time and sensing location, the MST and other adaptive algorithms could resolve spectral shifts at some locations, even if others can no longer be resolved.


2021 ◽  
Vol 17 (1) ◽  
pp. 1-13
Author(s):  
O.E. Thomas ◽  
O.A. Adegoke ◽  
F.G. Adenmosun ◽  
O.J. Abiodun

Background: The applications of a group of 4-carboxyl-2,6-dintrophenylazohydroxynaphathalenes, AZ-01 to 04, as colourants, chemosensors or synthetic intermediates have been limited by their solubility.Aim: To investigate the effect of solvent mixture composition on the solubility, solution thermodynamics and position of equilibrium processes of the dyes.Method: The UV-visible spectral patterns of the dyes in binary mixtures including Methanol:Water, Ethanol:Water, Methanol:Ethanol, Methanol:Propan-1-ol, Methanol:Propan-2-ol, Propan-1-ol:Water and Propan-2-ol:Water were acquired. The type and quantitative estimation of solute-solvent interactions at play were determined by fitting spectral patterns to solvent parameters using multilinear regression.Results: Preferential solvation was detected by the non-ideality of the plots of E12 as against the mole fractions of co-solvent in all binary mixtures. In pure solvents, the spectral shifts of AZ-01, 03 and 04, which exist predominantly in the hydrazone form, were affected by polarity of solvent milieu while solvent basicity and acidity, in that order, were the significant parameters for AZ-02. In aqueous alcoholic mixtures, solvent polarity was contributory, although to different degrees, to the observed spectral data of the four dyes. However, solvent acidity and basicity were the primary determinants of spectral shifts observed with AZ-04 and AZ-03 respectively. Spectra-structure relationships identified the formation of the charged hydrazone tautomer which requires stabilisation by polar solvent milieu as responsible for the observed trend. In addition, interactions between new aggregated solvent-solvent species and the propionic acid substituent present in AZ-03 contributed to its spectral shifts.Conclusion: The solvatochromic properties of the phenylazonaphthalene series in binary mixtures have been successfully studied.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4486
Author(s):  
Chenfei Shen ◽  
Xinsheng Jin ◽  
William J. Glover ◽  
Xiao He

Many experiments have been carried out to display different colors of Proteorhodopsin (PR) and its mutants, but the mechanism of color tuning of PR was not fully elucidated. In this study, we applied the Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps (EE-GMFCC) method to the prediction of excitation energies of PRs. Excitation energies of 10 variants of Blue Proteorhodopsin (BPR-PR105Q) in residue 105GLN were calculated with the EE-GMFCC method at the TD-B3LYP/6-31G* level. The calculated results show good correlation with the experimental values of absorption wavelengths, although the experimental wavelength range among these systems is less than 50 nm. The ensemble-averaged electric fields along the polyene chain of retinal correlated well with EE-GMFCC calculated excitation energies for these 10 PRs, suggesting that electrostatic interactions from nearby residues are responsible for the color tuning. We also utilized the GMFCC method to decompose the excitation energy contribution per residue surrounding the chromophore. Our results show that residues ASP97 and ASP227 have the largest contribution to the absorption spectral shift of PR among the nearby residues of retinal. This work demonstrates that the EE-GMFCC method can be applied to accurately predict the absorption spectral shifts for biomacromolecules.


2021 ◽  
pp. 002383092110296
Author(s):  
Michelle R. Kapolowicz ◽  
Daniel R. Guest ◽  
Vahid Montazeri ◽  
Melissa M. Baese-Berk ◽  
Peter F. Assmann

To investigate the role of spectral pattern information in the perception of foreign-accented speech, we measured the effects of spectral shifts on judgments of talker discrimination, perceived naturalness, and intelligibility when listening to Mandarin-accented English and native-accented English sentences. In separate conditions, the spectral envelope and fundamental frequency (F0) contours were shifted up or down in three steps using coordinated scale factors (multiples of 8% and 30%, respectively). Experiment 1 showed that listeners perceive spectrally shifted sentences as coming from a different talker for both native-accented and foreign-accented speech. Experiment 2 demonstrated that downward shifts applied to male talkers and the largest upward shifts applied to all talkers reduced the perceived naturalness, regardless of accent. Overall, listeners rated foreign-accented speech as sounding less natural even for unshifted speech. In Experiment 3, introducing spectral shifts further lowered the intelligibility of foreign-accented speech. When speech from the same foreign-accented talker was shifted to simulate five different talkers, increased exposure failed to produce an improvement in intelligibility scores, similar to the pattern observed when listeners actually heard five foreign-accented talkers. Intelligibility of spectrally shifted native-accented speech was near ceiling performance initially, and no further improvement or decrement was observed. These experiments suggest a mechanism that utilizes spectral envelope and F0 cues in a talker-dependent manner to support the perception of foreign-accented speech.


Sign in / Sign up

Export Citation Format

Share Document