Sedimentation of elliptical particles using Immersed Boundary – Lattice Boltzmann Method: A complementary repulsive force model

2018 ◽  
Vol 262 ◽  
pp. 180-193 ◽  
Author(s):  
S. Karimnejad ◽  
A. Amiri Delouei ◽  
M. Nazari ◽  
M.M. Shahmardan ◽  
A.A. Mohamad
Author(s):  
Sajjad Karimnejad ◽  
Amin Amiri Delouei ◽  
Mohsen Nazari ◽  
Mohammad Mohsen Shahmardan ◽  
Goodarz Ahmadi ◽  
...  

Abstract In this study, the hybrid immersed boundary-thermal lattice Boltzmann method was developed and applied to assess the inclusion of heat transfer in flows containing non-circular particles. The direct forcing/heating immersed boundary method was used for determining the hydrodynamic forces and energy exchange. A complementary method was also implemented to treat non-circularity. The accuracy of the computational model and the employed complementary method were properly validated. Two cases for the falling ellipse were considered. A set of comprehensive simulations were performed and the effects of geometry, Grashof number, repulsive force, and heat transfer were analyzed. The findings of this study would be useful for a better understanding of settling non-circular particles in a thermal field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi Zhu ◽  
Fang-Bao Tian ◽  
John Young ◽  
James C. Liao ◽  
Joseph C. S. Lai

AbstractFish adaption behaviors in complex environments are of great importance in improving the performance of underwater vehicles. This work presents a numerical study of the adaption behaviors of self-propelled fish in complex environments by developing a numerical framework of deep learning and immersed boundary–lattice Boltzmann method (IB–LBM). In this framework, the fish swimming in a viscous incompressible flow is simulated with an IB–LBM which is validated by conducting two benchmark problems including a uniform flow over a stationary cylinder and a self-propelled anguilliform swimming in a quiescent flow. Furthermore, a deep recurrent Q-network (DRQN) is incorporated with the IB–LBM to train the fish model to adapt its motion to optimally achieve a specific task, such as prey capture, rheotaxis and Kármán gaiting. Compared to existing learning models for fish, this work incorporates the fish position, velocity and acceleration into the state space in the DRQN; and it considers the amplitude and frequency action spaces as well as the historical effects. This framework makes use of the high computational efficiency of the IB–LBM which is of crucial importance for the effective coupling with learning algorithms. Applications of the proposed numerical framework in point-to-point swimming in quiescent flow and position holding both in a uniform stream and a Kármán vortex street demonstrate the strategies used to adapt to different situations.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zhong Yun ◽  
Chuang Xiang ◽  
Liang Wang

Researches on the principle of human red blood cell’s (RBC) injuring and judgment basis play an important role in decreasing the hemolysis in a blood pump. In the current study, the judgment of hemolysis in a blood pump study was through some experiment data and empirical formula. The paper forms a criterion of RBC’s mechanical injury in the aspect of RBC’s free energy. First, the paper introduces the nonlinear spring network model of RBC in the frame of immersed boundary-lattice Boltzmann method (IB-LBM). Then, the shape, free energy, and time needed for erythrocyte to be shorn in different shear flow and impacted in different impact flow are simulated. Combining existing research on RBC’s threshold limit for hemolysis in shear and impact flow with this paper’s, the RBC’s free energy of the threshold limit for hemolysis is found to be 3.46 × 10 − 15  J. The threshold impact velocity of RBC for hemolysis is 8.68 m/s. The threshold value of RBC can be used for judgment of RBC’s damage when the RBC is having a complicated flow of blood pumps such as coupling effect of shear and impact flow. According to the change law of RBC’s free energy in the process of being shorn and impacted, this paper proposed a judging criterion for hemolysis when the RBC is under the coupling effect of shear and impact based on the increased free energy of RBC.


2021 ◽  
Author(s):  
Xixiong Guo

This study is aimed at developing a novel computational framework that seamlessly incorporates the feedback forcing model and adaptive mesh refinement mesh refinement (AMR) techniques in the immersed-boundary (IB) lattice Boltzmann method (LBM) approach, so that challenging problems, including the interactions between flowing fluids and moving objects, can be numerically investigated. Owing to the feedback forcing based IB model, the advantages, such as simple mechanics principle, explicit interpolations, and inherent satisfaction of no-slip boundary condition for solid surfaces are fully exhibited. Additionally, the "bubble' function is employed in the local mesh refinement process, so that the solution of second order accuracy at newly generated nodes can be obtained only by the spatial interpolation but no temporal interpolation. Focusing on both steady and unsteady flow around a single cylinder and bi-cylinders, a number of test cases performed in this study have demonstrated the usefulness and effectiveness of the present AMR IB-LBM approach.


Sign in / Sign up

Export Citation Format

Share Document