scholarly journals Calorimetric studies and thermodynamic properties of Li-Pb-Pd liquid alloys

2021 ◽  
pp. 116791
Author(s):  
A. Dębski ◽  
S. Terlicka ◽  
W. Gąsior ◽  
M. Saternus ◽  
A. Fornalczyk
BIBECHANA ◽  
2015 ◽  
Vol 13 ◽  
pp. 60-71
Author(s):  
RP Koirala ◽  
BP Singh ◽  
IS Jha ◽  
D Adhikari

A comparative study has been carried out to understand the concentration dependence of thermodynamic properties such as, free energy of mixing, heat of mixing, entropy of mixing, activity  and microscopic properties, such as concentration fluctuation in long wavelength limit  and Warren-Cowley short range order parameter  of  In-based three liquid alloys (In-Pb , In-Tl and In-Zn) on the basis of self-association model. The analysis reveals that self-association model successfully explains the observed properties of the liquid alloys.  Positive deviation of the thermodynamic properties of the alloys from the Raoultian solution behaviour indicates that the alloys are weakly segregating in nature. The comparative assessment of the interaction energy and the microscopic properties suggests that the degree of segregation is greatest in In-Zn alloy and comparable in In-Pb and In-Tl alloys.BIBECHANA 13 (2016) 60-71


2014 ◽  
Vol 88 (9) ◽  
pp. 1463-1471 ◽  
Author(s):  
V. V. Berezutskii ◽  
M. A. Shevchenko ◽  
M. I. Ivanov ◽  
V. S. Sudavtsova

2005 ◽  
Vol 78 (1) ◽  
pp. 57-63
Author(s):  
A. G. Morachevskii ◽  
L. B. Tsymbulov ◽  
E. Yu. Kolosova ◽  
L. Sh. Tsemekhman

2009 ◽  
Vol 2009 (2) ◽  
pp. 107-112 ◽  
Author(s):  
N. V. Podoprigora ◽  
V. S. Sudavtsova

1981 ◽  
Vol 15 (10) ◽  
pp. 1087-1089 ◽  
Author(s):  
S.N. Khanna ◽  
P. Hicter ◽  
F. Cyrot-Lackmann

Author(s):  
Bulat К. Kasenov ◽  
Shuga B. Kasenova ◽  
Zhenisgul I. Sagintaeva ◽  
Yerbolat Y. Kuanyshbekov ◽  
Meruert O. Turtubaeva

Zincate-manganites with the composition NdM2IIZnMnO6 (MII− Mg, Ca) were synthesized using ceramic technology from oxides of Nd (III), Zn (II), Mn (III) and carbonates of alkaline-earth metals - magnesium and calcium. X-ray patterns of the prepared substancies were measured on a DRON-2.0 diffractometer. We established that they crystallize in the cubic system with the following unit cell parameters: NdMg2ZnMnO6 – а=13.927±0.035 Å, Z = 4, V0 = 2701.36±0.11 Å3, V0el.cell. = 675.34±0.03 Å3, ρX-ray = 4.20, ρpycn. = 4.19±0.01 g/cm3; NdCa2ZnMnO6 – а=13.910±0.030 Å, Z = 4, V0 = 2691.45±0.10 Å3, V0el.cell. = 672.86±0.03 Å3, ρX-ray = 4.04, ρpycn. = 4.01±0.08 g/сm3. The temperature dependence of the heat capacity of NdMg2ZnMnO6 and NdCa2ZnMnO6 was studied by dynamic calorimetry in the range of 298.15-673 K on the IT-S-400 calorimeter. Five parallel experiments were performed at each temperature point with 25 K step. The results were averaged and analyzed using mathematical statistics. As a result of calorimetric studies of the heat capacity, within the temperature range of 298.15-673 K, we discovered on the curves of the temperature dependence of heat capacity the phase transitions of the II kind at the following temperatures: 373, 548 К- NdMg2ZnMnO6, 448, 573 К – NdCa2ZnMnO6. These phase transitions were probably due to Schottky effects -the transition from semiconductivity to metallic conductivity, and variations in capacity, dielectric permittivity, the occurrence of Curie or Neel points. The equations of the temperature dependence of the heat capacity were derived on the basis of the experimental values with account the temperatures of the phase transitions. By the ion increment method, we calculated the standard entropies of the compounds investigated. We calculated the temperature dependences of С°р(Т) and thermodynamic functions Н°(Т)-Н°(298.15), S°(T) and Фхх(Т).Forcitation:Kasenov B.K., Kasenova Sh.B., Sagintaeva Zh.I., Kuanyshbekov Е.Е., Turtubaeva М.О. Synthesis and study of thermodynamic properties of new zincate-manganites NdM2IIZnMnO6 (MII − Mg, Ca). Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 3. P. 16-20


Author(s):  
N. Kotova ◽  
N. Usenko ◽  
N. Golovata

The features of the component interaction in liquid alloys of ternary Al-Ge-3d-Me systems (Me = Mn, Fe, Ni, Cu) are described. A joint analysis of the concentration dependences of the enthalpies of mixing of liquid alloys previously obtained by the authors via high-temperature calorimetry, and also of the phase diagrams of the constituent binary systems was carried out. The relationship between the enthalpy values and the type of short-range ordering in liquid alloys of the studied systems was established. The visual similarity of the topology of the projections of ΔmH isolines of the Al-Ge-Fe (Ni, Cu) liquid alloys and a completely different course of the isolines of the enthalpies of mixing for the liquid Al-Ge-Mn alloys are established. The changes in the absolute values of the ΔmHmin from system to system are observed. The enthalpies are approximately the same for the Al-Ge-Mn and Al-Ge-Fe systems (about -20 kJ⋅mol-1), they increase significantly from Al-Ge-Fe to Al-Ge-Ni (-50 kJ⋅mol-1), and then decrease substantially towards the Al-Ge-Cu system (-15 kJ⋅mol-1). For the Al-Ge-Mn (Fe, Ni, Cu) liquid alloys the lines of extreme interaction are located near the 3d-corner of the concentration triangle. These lines connect the compositions of the most stable intermetallic compounds in binary Al(Ge)-Mn(Fe, Ni, Cu) systems. It has been shown that the thermodynamic properties of Al-Ge-Fe (Ni, Cu) liquid alloys are mainly determined by the pair interaction of the components of the constituent binary Al-Fe(Ni, Cu) and Ge-Fe(Ni, Cu) systems, the influence of Al-Fe(Ni, Cu) systems being prevailed. For the Al-Ge-Mn system, the interaction of components in the Ge-Mn binary system gives the main contribution to the thermodynamic properties of the ternary system. The Al-Ge-Mn (Fe, Cu) systems are characterized by significantly lower absolute values of the heats of alloy formation compared to the Al-Ge-Ni one. The specified characteristics of component interaction in the ternary systems under consideration and different values of the enthalpies of mixing are determined by the peculiarities and regular changes of the electronic structure of 3d metals across the 3d series from Mn to Cu.


2005 ◽  
Vol 70 (1) ◽  
pp. 9-20 ◽  
Author(s):  
Dragan Manasijevic ◽  
Dragana Zivkovic ◽  
Katayama Iwao ◽  
Zivan Zivkovic

The results of the calculation of the thermodynamic properties for liquid Ga-Sb-Tl alloys at the temperature 1073 K are presented in this paper. Initially, the most appropriate thermodynamic model for the investigated system was selected. Based on a comparison of the values calculated by different geometric models (Kohler, Muggianu, Toop, Hillert, Chou) with the existing experimental based data, asymmetric models of calculation were determined to give the best results. The asymmetric nature of the investigated ternary system was additionally confirmed by the Chou similarity coefficient concept. For these reasons, further complete thermodynamic calculations were performed according to the Hillert model in five sections of the ternary Ga-Sb-Tl system from each corner with the mole ratio of other two components being 9:1; 7:3; 5:5; 3:7 and 1:9. The obtained results include integral excess Gibbs energy dependences on composition for all the investigated sections. The calculated activity values at 1073 K for all components are given in the form of isoactivity diagrams. Comparison between the calculated and experimentally obtained gallium activities shows good agreement.


Sign in / Sign up

Export Citation Format

Share Document