scholarly journals FEATURES OF COMPONENT INTERACTION IN LIQUID ALLOYS OF TERNARY Al-Ge-3d-Me (Me = Mn, Fe, Ni, Cu) SYSTEMS

Author(s):  
N. Kotova ◽  
N. Usenko ◽  
N. Golovata

The features of the component interaction in liquid alloys of ternary Al-Ge-3d-Me systems (Me = Mn, Fe, Ni, Cu) are described. A joint analysis of the concentration dependences of the enthalpies of mixing of liquid alloys previously obtained by the authors via high-temperature calorimetry, and also of the phase diagrams of the constituent binary systems was carried out. The relationship between the enthalpy values and the type of short-range ordering in liquid alloys of the studied systems was established. The visual similarity of the topology of the projections of ΔmH isolines of the Al-Ge-Fe (Ni, Cu) liquid alloys and a completely different course of the isolines of the enthalpies of mixing for the liquid Al-Ge-Mn alloys are established. The changes in the absolute values of the ΔmHmin from system to system are observed. The enthalpies are approximately the same for the Al-Ge-Mn and Al-Ge-Fe systems (about -20 kJ⋅mol-1), they increase significantly from Al-Ge-Fe to Al-Ge-Ni (-50 kJ⋅mol-1), and then decrease substantially towards the Al-Ge-Cu system (-15 kJ⋅mol-1). For the Al-Ge-Mn (Fe, Ni, Cu) liquid alloys the lines of extreme interaction are located near the 3d-corner of the concentration triangle. These lines connect the compositions of the most stable intermetallic compounds in binary Al(Ge)-Mn(Fe, Ni, Cu) systems. It has been shown that the thermodynamic properties of Al-Ge-Fe (Ni, Cu) liquid alloys are mainly determined by the pair interaction of the components of the constituent binary Al-Fe(Ni, Cu) and Ge-Fe(Ni, Cu) systems, the influence of Al-Fe(Ni, Cu) systems being prevailed. For the Al-Ge-Mn system, the interaction of components in the Ge-Mn binary system gives the main contribution to the thermodynamic properties of the ternary system. The Al-Ge-Mn (Fe, Cu) systems are characterized by significantly lower absolute values of the heats of alloy formation compared to the Al-Ge-Ni one. The specified characteristics of component interaction in the ternary systems under consideration and different values of the enthalpies of mixing are determined by the peculiarities and regular changes of the electronic structure of 3d metals across the 3d series from Mn to Cu.

Author(s):  
N. Kotova ◽  
N. Golovata ◽  
N. Usenko

In the present work, the enthalpies of mixing of liquid alloys of the ternary Mn-Al-Gd system have been calculated using the regular solution model by the Redlich-Kister-Muggianu formula. Also a comparison was made of calculated values of enthalpies of mixing in this system with the experimentally determined thermochemical properties of liquid alloys of the Mn-In-Gd ternary system obtained previously. In general, we estimate that the values of the enthalpies of mixing in the Mn-Al-Gd ternary system should be more exothermic than in the Mn–In-Gd one. This fact can be explained taking into consideration the main features of the component interaction in the boundary binary systems, namely, such important characteristics as electronegativity of the components, their electron work functions and a large difference in size of atoms. It can be concluded that it is the binary Mn–Al system that makes a significant contribution to the formation energy of ternary alloys. An imaginary line drawn through the points of maximum curvature of the isoenthalpic lines is considerably shifted towards the binary Mn–Al boundary, thus expanding significantly the region of rather exothermic enthalpies of mixing in the corresponding ternary system. For the two indicated ternary systems the size mismatch entropy has been calculated within the framework of hard spheres model and the Sσ/kB parameter has been determined. On the basis of the comprehensive analysis carried out, the criteria for the probability of occurrence of regions of easy amorphization in these ternary systems are proposed. The determination of the topology of the mixing enthalpy surface and the Sσ/kB parameter for the melts of studied ternary systems together with the data on binary and ternary compounds existing in these systems allowed to reasonably assume the concentration regions where the investigated ternary alloys have tendency for easy amorphization while rapid cooling of the melt. The simultaneous realization of the following three conditions was taken as a criterion for the possible existence of a region of easy amorphization: the absolute value of the enthalpies of mixing is at least 6 kJ/mol, the Sσ/kB parameter is not less than 0.3–0.4 and a certain distance from the concentration region corresponding to the exact composition of binary or ternary compounds.


Author(s):  
N. Golovata ◽  
N. Kotova ◽  
N. Usenko

In the present work, the Gibbs energies of mixing of liquid alloys of the Ge-Mn-Gd ternary system were determined, which was made on the basis of an analysis of published data on the thermodynamic properties of liquid alloys of boundary binary systems that form the ternary Ge-Mn-Gd, as well as on the basis of the model calculations in these binary systems. To determine the activities of the components, the Gibbs energies of mixing, and the enthalpies of mixing of liquid alloys of the Ge-Mn(Gd) systems, for which alloying process is accompanied by significant heat release, an ideal associated solution model was applied. For the melts of the Mn-Gd system, which are characterized by rather insignificant exothermic effects, a model of regular solutions was used. The surface of the Gibbs energy of mixing for the alloys of the Ge-Mn-Gd ternary system has been determined on the basis of the concentration dependences of the Gibbs energies of mixing obtained for constituent binary systems under the assumption of additivity of pair interactions using the Redlich-Kister-Muggianu method. The obtained topology of the Gibbs energy isolines projections is compared with the thermochemical properties of liquid alloys of this system that we have determined earlier. A comparative analysis of the topology of these surfaces in the Ge-Mn-Gd system led to the conclusion that the surfaces of ΔG and ΔmH monotonically decrease from the manganese-rich angle of the diagram towards the Ge-Gd side of the concentration triangle. The minimum value of the thermodynamic characteristics of mixing of the ternary liquid alloys corresponds to the composition, which coincides with the composition of the most stable intermetallic compound in the Ge-Gd system. From the course of isolines of free energies and integral enthalpies of mixing, one can also conclude about the influence of a short-range order, existed in the Ge-Mn system near the composition with a mole fraction of mangan greater than 0.7, on the properties of ternary alloys in the vicinity of this composition. Thus, the topology of isolines and the large exothermic values of the obtained thermodynamic properties allow us to make a reasonable conclusion that the strong interaction between unlike components inherent in the Ge-Gd system in the solid state is also maintained for liquid alloys of the Ge-Mn-Gd system.


1984 ◽  
Vol 62 (3) ◽  
pp. 457-474 ◽  
Author(s):  
A. D. Pelton ◽  
C. W. Bale ◽  
P. L. Lin

Phase diagrams and thermodynamic properties of five additive molten salt ternary systems and nine reciprocal molten salt ternary systems containing the ions Li+, Na+, [Formula: see text], OH− are calculated from the thermodynamic properties of their binary subsystems which were obtained previously by a critical assessment of the thermodynamic data and the phase diagrams in these binary systems. Thermodynamic properties of ternary liquid phases are estimated from the binary properties by means of the Conformal Ionic Solution Theory. The ternary phase diagrams are then calculated from these thermodynamic properties by means of computer programs designed for the purpose. It is found that a ternary phase diagram can generally be calculated in this way with a maximum error about twice that of the maximum error in the binary phase diagrams upon which the calculations are based. If, in addition, some reliable ternary phase diagram measurements are available, these can be used to obtain small ternary correction terms. In this way, ternary phase diagram measurements can be smoothed and the isotherms drawn in a thermodynamically correct way. The thermodynamic approach permits experimental data to be critically assessed in the light of thermodynamic principles and accepted solution models. A critical assessment of error limits on all the calculated ternary diagrams is made, and suggestions as to which composition regions merit further experimental study are given.


2017 ◽  
Vol 898 ◽  
pp. 1036-1041
Author(s):  
M.H. Rong ◽  
S.D. Lin ◽  
Jiang Wang ◽  
H.Y. Zhou ◽  
G.H. Rao

Ternary intermetallic compounds with rare earth elements and transition metals in the RE-Mn-X (X=Si, Ge, Sn etc.) ternary systems show interesting magnetic properties. As key sub-binary systems of the RE-Mn-X (X=Si, Ge, Sn etc.) ternary systems, the information of phase equilibria and thermodynamic properties of the Mn-RE (RE=Nd, Gd, Dy) binary systems are indispensable to explore the RE-Mn-X (X=Si, Ge, Sn etc.) alloys with better magnetic properties. In this work, the experimental data of phase equilibria and thermodynamic properties of the Mn-RE (RE=Nd, Gd, Dy) binary systems in the published literature were reviewed. Based on the available experimental information, thermodynamic calculation of phase equilibria of the Mn-RE (RE=Nd, Gd, Dy) binary systems was performed using the CALPHAD method. As a result, further experimental investigation and thermodynamic optimization would be still necessary in order to develop the self-consistent and compatible thermodynamic database of the RE-Mn-based alloy systems.


Author(s):  
Michael Ivanov ◽  
Natalia Usenko ◽  
Natalia Kotova

Abstract The enthalpies of mixing in liquid alloys of the ternary Al–Gd–Mn system were determined over a wide range of compositions by means of isoperibolic calorimetry at 1650 K. The measurements of the partial enthalpies of components were performed along five sections: for the ΔH̅ Al (sections with x Gd/x Mn = 0.30/0.70 and 0.65/0.35 for x Al changed from 0 up to 0.30); for the ΔH̅ Gd (x Al/x Mn = 0.80/ 0.20 and 0.50/0.50 for x Gd changed from 0 up to 0.30); for the ΔH̅ Mn (x Al/x Gd = 0.29/0.71 for x Mn changed from 0 up to 0.26). The enthalpies of mixing in the ternary system were found to be exothermic and steadily increasing in absolute values from the Mn corner towards the Al–Gd constituent binary system, reaching the minimum value of approximately – 37 kJ · mol–1 in the vicinity of the Al0.6Gd0.4 composition, evidently related to the formation of stable Al2Gd phase.


2001 ◽  
Vol 79 (10) ◽  
pp. 1447-1459 ◽  
Author(s):  
Juan Antonio Gonzalez ◽  
Javier Carmona ◽  
Nicolas Riesco ◽  
Isaias Garcia de la Fuente ◽  
Jose Carlos Cobos

The ability of the DISQUAC model for predicting excess enthalpies (HE) of ternary systems on the basis of binary parameters only, i.e., neglecting ternary interactions is analyzed. At this end, DISQUAC results for a set of 95 ternary systems are examined. The solutions studied are formed by only hydrocarbons (or CCl4); or by one polar compound (not alcohols) and two hydrocarbons (or CCl4); or by two polar compounds (not alcohols) and one hydrocarbon (or CCl4); or by one alcohol and two hydrocarbons (or CCl4). Most of the HEs analyzed are endothermic, and valid at 298.15 K and atmospheric pressure. The mean deviation between experimental values and DISQUAC results is 5.5% for the ternary systems and 6.5% for the constituent binaries (181 mixtures). The interaction parameters used are valid for the description of thermodynamic properties of binary systems: vapor–liquid equilibria (VLE), liquid–liquid (LLE), and solid–liquid equilibria (SLE), HE and excess heat capacities at constant pressure (CEP), as well as HE and VLE of ternary solutions. Predictions are, in most of the cases, independent of the mixture compounds, or the number of groups present in the system. Larger deviations underline typical shortcomings of the group contributions methods (e.g., Patterson's effect; branching). Note that results for the ternaries and for the constituent binaries are of the same order. This is not the case for the Dortmund version of UNIFAC. The mean deviations obtained using this model are 10.5% and 14% for the ternary and binary mixtures, respectively. Results from other models (original UNIFAC, Flory's theory, Nitta–Chao, UNIQUAC association model) for a number of systems are also compared to those obtained using DISQUAC.Key words: predictions, HE, ternary systems, binary parameters, geometrical methods, Flory, group contributions.


Sign in / Sign up

Export Citation Format

Share Document