Population genomic analysis reveals domestication of cultivated rye from weedy rye

2021 ◽  
Author(s):  
Yanqing Sun ◽  
Enhui Shen ◽  
Yiyu Hu ◽  
Dongya Wu ◽  
Yu Feng ◽  
...  
2009 ◽  
Vol 26 (6) ◽  
pp. 1357-1367 ◽  
Author(s):  
Laura B. Scheinfeldt ◽  
Shameek Biswas ◽  
Jennifer Madeoy ◽  
Caitlin F. Connelly ◽  
Eric E. Schadt ◽  
...  

Gene ◽  
2021 ◽  
Vol 768 ◽  
pp. 145303
Author(s):  
Chao Qin ◽  
Yanru Guo ◽  
Jianzhuang Wu ◽  
Long Wang ◽  
Milton Brian Traw ◽  
...  

2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Chrispin Chaguza ◽  
◽  
Jennifer E. Cornick ◽  
Simon R. Harris ◽  
Cheryl P. Andam ◽  
...  

2016 ◽  
Author(s):  
Eric Disdero ◽  
Jonathan Filée

AbstractMotivationPopulation genomic analysis of transposable elements has greatly benefited from recent advances of sequencing technologies. However, the propensity of transposable elements to nest in highly repeated regions of genomes limits the efficiency of bioinformatic tools when short read sequences technology is used.ResultsLoRTE is the first tool able to use PacBio long read sequences to identify transposon deletions and insertions between a reference genome and genomes of different strains or populations. Tested against Drosophila melanogaster PacBio datasets, LoRTE appears to be a reliable and broadly applicable tools to study the dynamic and evolutionary impact of transposable elements using low coverage, long read sequences.Availability and ImplementationLoRTE is available at http://www.egce.cnrs-gif.fr/?p=6422. It is written in Python 2.7 and only requires the NCBI BLAST + package. LoRTE can be used on standard computer with limited RAM resources and reasonable running time even with large [email protected]


Sign in / Sign up

Export Citation Format

Share Document