neutral processes
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 18)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Thiago Bernardi Vieira ◽  
Liriann Chrisley Da Silva ◽  
Jessica Silva ◽  
Lilian Casatti ◽  
Renato de Romero ◽  
...  

The Species-Sorting concept, one of the models developed to explain patterns in metacommunity structure, suggests that relationships between biological communities and environmental conditions is the basic means of the species selection processes. A second concept is Neutral Theory, and the idea of neutral dynamics underpinning metacommunity structure, cannot be overlooked. The third mechanism is the Mass-Effect concept, that focuses on the interaction between environmental condition and neutral effects. In the present study, we partitioned fish communities in streams between niche and neutral theory concepts, identifying the best representation of metacommunity structure, and assessed if linear and hydrographic distance were equivalent in the representation of neutral processes. The result points to the importance of species sorting mechanisms in structuring fish communities with neutral processes best represented by the linear distances. These results are important for the fish fauna conservation leading to three considerations: (i) the variation of the landscape and habitat is important for the stream fish, (ii) the natural barriers are an important landscape component to be considered, and (iii) the artificial barriers (dams and impoundments) need to be planned taking in account the catchment basin as the landscape unit.


2021 ◽  
Author(s):  
Yan He ◽  
Yong Jiang ◽  
Hongling Lin ◽  
Yuanfang Pan ◽  
Shichu Liang ◽  
...  

Abstract Background and aimsThe importance of niche processes and neutral processes to community assembly has been affirmed by most studies, although their relative importance needs to be determined in many systems. Moreover, as the spatial scale changes, the ecological processes that determine the community pattern may differ. We tested these ideas in subtropical karst forest in southwestern China in order to aid efforts of community reconstruction.MethodsTo test the importance of niche-based and neutral mechanisms we compared the fit six models to the observed SAD of the plot at three different sampling scales (10 m × 10 m, 20 m × 20 m, 50 m × 50 m). We also used spatial autocorrelation and distance-based Moran's eigenvector maps (dbMEM) combined with variation partitioning to further determine the relative contribution of the niche process and the neutral process under different sampling scales.ResultsThe neutral theoretical and statistical models fit the observed species abundance distribution curve best at each sampling scale. And variation partitioning showed that although the contribution of spatial structure was lower at larger sampling scales, it was still important, suggesting that neutral processes drive community structure at all sampling scales. In contrast, habitat filtering and interspecies competition may lead to a net weakening of the contribution of the niche process to the species abundance pattern of the community because they act in opposite directions. ConclusionsIn the restoration and reconstruction of local karst forest communities, environmental heterogeneity, inter-species relationships, and geographic spatial differences should all be considered.


2021 ◽  
Vol 12 ◽  
Author(s):  
Muhammad Ahmad ◽  
Thibault Leroy ◽  
Nikos Krigas ◽  
Eva M. Temsch ◽  
Hanna Weiss-Schneeweiss ◽  
...  

Background and Aims: Quantifying genetic variation is fundamental to understand a species’ demographic trajectory and its ability to adapt to future changes. In comparison with diploids, however, genetic variation and factors fostering genetic divergence remain poorly studied in polyploids due to analytical challenges. Here, by employing a ploidy-aware framework, we investigated the genetic structure and its determinants in polyploid Alkanna tinctoria (Boraginaceae), an ancient medicinal herb that is the source of bioactive compounds known as alkannin and shikonin (A/S). From a practical perspective, such investigation can inform biodiversity management strategies.Methods: We collected 14 populations of A. tinctoria within its main distribution range in Greece and genotyped them using restriction site-associated DNA sequencing. In addition, we included two populations of A. sieberi. By using a ploidy-aware genotype calling based on likelihoods, we generated a dataset of 16,107 high-quality SNPs. Classical and model-based analysis was done to characterize the genetic structure within and between the sampled populations, complemented by genome size measurements and chromosomal counts. Finally, to reveal the drivers of genetic structure, we searched for associations between allele frequencies and spatial and climatic variables.Key Results: We found support for a marked regional structure in A. tinctoria along a latitudinal gradient in line with phytogeographic divisions. Several analyses identified interspecific admixture affecting both mainland and island populations. Modeling of spatial and climatic variables further demonstrated a larger contribution of neutral processes and a lesser albeit significant role of selection in shaping the observed genetic structure in A. tinctoria.Conclusion: Current findings provide evidence of strong genetic structure in A. tinctoria mainly driven by neutral processes. The revealed natural genomic variation in Greek Alkanna can be used to further predict variation in A/S production, whereas our bioinformatics approach should prove useful for the study of other non-model polyploid species.


Biologia ◽  
2021 ◽  
Author(s):  
Lucena R. Virgilio ◽  
Werther Pereira Ramalho ◽  
João C. B. Silva ◽  
Monik Oliveira da Suçuarana ◽  
Rodrigo Souza Gomes ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Bachar Cheaib ◽  
Hamza Seghouani ◽  
Martin Llewellyn ◽  
Katherine Vandal-Lenghan ◽  
Pierre-Luc Mercier ◽  
...  

Abstract Background Disentangling the dynamics of microbial interactions within communities improves our comprehension of metacommunity assembly of microbiota during host development and under perturbations. To assess the impact of stochastic variation of neutral processes on microbiota structure and composition under disturbance, two types of microbial habitats, free-living (water), and host-associated (skin and gut) were experimentally exposed to either a constant or gradual selection regime exerted by two sublethal cadmium chloride dosages (CdCl2). Yellow Perch (Perca flavescens) was used as a piscivorous ecotoxicological model. Using 16S rDNA gene based metataxonomics, quantitative diversity metrics of water, skin and gut microbial communities were characterized along with development and across experimental conditions. Results After 30 days, constant and gradual selection regimes drove a significant alpha diversity increase for both skin and gut microbiota. In the skin, pervasive negative correlations between taxa in both selection regimes in addition to the taxonomic convergence with the environmental bacterial community, suggest a loss of colonisation resistance resulting in the dysbiosis of yellow perch microbiota. Furthermore, the network connectivity in gut microbiome was exclusively maintained by rare (low abundance) OTUs, while most abundant OTUs were mainly composed of opportunistic invaders such as Mycoplasma and other genera related to fish pathogens such as Flavobacterium. Finally, the mathematical modelling of community assembly using both non-linear least squares models (NLS) based estimates of migration rates and normalized stochasticity ratios (NST) based beta-diversity distances suggested neutral processes drove by taxonomic drift in host and water communities for almost all treatments. The NLS models predicted higher demographic stochasticity in the cadmium-free host and water microbiomes, however, NST models suggested higher ecological stochasticity under perturbations. Conclusions Neutral models agree that water and host-microbiota assembly promoted by rare taxa have evolved predominantly under neutral processes with potential involvement of deterministic forces sourced from host filtering and cadmium selection. The early signals of perturbations in the skin microbiome revealed antagonistic interactions by a preponderance of negative correlations in the co-abundance networks. Our findings enhance our understanding of community assembly host-associated and free-living under anthropogenic selective pressure.


2020 ◽  
Author(s):  
Benno I. Simmons ◽  
Andrew P. Beckerman ◽  
Katrine Hansen ◽  
Pietro K. Maruyama ◽  
Constantinos Televantos ◽  
...  

2020 ◽  
Author(s):  
Bachar Cheaib ◽  
Hamza Seghouani ◽  
Martin Stephen Llewellyn ◽  
Katherine Vandal-Lenghan ◽  
Pierre-Luc Mercier ◽  
...  

Abstract Background: Disentangling the dynamics of microbial interactions within communities improves our comprehension of metacommunity assembly of microbiota during host development and under perturbations. To assess the impact of stochastic variation of neutral processes on microbiota structure and composition under disturbance, two types of microbial habitats, free-living (water), and host-associated (skin and gut) were experimentally exposed to either a constant or gradual selection regime exerted by two sublethal cadmium chloride dosages (CdCl2). Yellow Perch (Perca flavescens) was used as a piscivorous ecotoxicological model. Using 16S rDNA gene based metataxonomics, quantitative diversity metrics of water, skin and gut microbial communities were characterized along with development and across experimental conditions. Results: After 30 days, constant and gradual selection regimes drove a significant alpha diversity increase for both skin and gut microbiota. In the skin, pervasive negative correlations between taxa in both selection regimes in addition to the taxonomic convergence with the environmental bacterial community, suggest a loss of colonisation resistance resulting in the dysbiosis of yellow perch microbiota. Furthermore, the network connectivity in gut microbiome was exclusively maintained by rare (low abundance) OTUs, while most abundant OTUs were mainly composed of opportunistic invaders such as Mycoplasma and other genera related to fish pathogens such as Flavobacterium. Finally, the mathematical modelling of community assembly using both non-linear least squares models (NLS) based estimates of migration rates and normalized stochasticity ratios (NST) based beta-diversity distances suggested neutral processes drove by taxonomic drift in host and water communities for almost all treatments. The NLS models predicted higher demographic stochasticity in the cadmium-free host and water microbiomes, however, NST models suggested higher ecological stochasticity under perturbations. Conclusions: Neutral models agree that water and host-microbiota assembly promoted by rare taxa have evolved predominantly under neutral processes with potential involvement of deterministic forces sourced from host filtering and cadmium selection. The early signals of perturbations in the skin microbiome revealed antagonistic interactions by a preponderance of negative correlations in the co-abundance networks. Our findings enhance our understanding of community assembly host-associated and free-living under anthropogenic selective pressure.


Sign in / Sign up

Export Citation Format

Share Document