Photochromic properties of the molecule Azure A chloride in polyvinyl alcohol matrix

2015 ◽  
Vol 1101 ◽  
pp. 109-115 ◽  
Author(s):  
Siyamak Shahab ◽  
Liudmila Filippovich ◽  
Rakesh Kumar ◽  
Mahdieh Darroudi ◽  
Mostafa Yousefzadeh Borzehandani ◽  
...  
2017 ◽  
Vol 28 (2) ◽  
pp. 280-284 ◽  
Author(s):  
Ji-Xi Guo ◽  
Ming-Xi Guo ◽  
Dian-Zeng Jia ◽  
Yin-Hua Li

2019 ◽  
Vol 5 (4) ◽  
pp. 56-63
Author(s):  
E.V. Dikhtiaruk ◽  
◽  
V.V. Paientko ◽  
A.K. Matkovsky ◽  
Yu.N. Nichiporuk ◽  
...  

2011 ◽  
Vol 3 (8) ◽  
pp. 91-93 ◽  
Author(s):  
Sindhu Honmute ◽  
◽  
Arunkumar Lagashetty ◽  
A. Venkataraman A. Venkataraman

2019 ◽  
Vol 41 (4) ◽  
pp. 246-252
Author(s):  
T.V. Dmytriieva ◽  
◽  
S.K. Krymovska ◽  
V.I. Bortnytskyi ◽  
S.M. Kobylinskyi ◽  
...  
Keyword(s):  

2018 ◽  
Author(s):  
Dmitrii Moldarev ◽  
Elbruz M. Baba ◽  
Marcos V. Moro ◽  
Chang C. You ◽  
Smagul Zh. Karazhanov ◽  
...  

It has been recently demonstrated that yttrium oxyhydride(YHO) films can exhibit reversible photochromic properties when exposed to illumination at ambient conditions. This switchable optical propertyenables their utilization in many technological applications, such as smart windows, sensors, goggles, medical devices, etc. However, how the composition of the films affects their optical properties is not fully clear and therefore demands a straightforward investigation. In this work, the composition of YHO films manufactured by reactive magnetron sputtering under different conditions is deduced in a ternary diagram from Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA). The results suggest that stable compounds are formed with a specificchemical formula – YH<sub>2-δ</sub>O<sub>δ</sub>. In addition, optical and electrical properties of the films are investigated, and a correlation with their compositions is established. The corresponding photochromic response is found in a specific oxygen concentration range (0.45 < δ < 1.5) with maximum and minimum of magnitude on the lower and higher border, respectively.


2019 ◽  
Author(s):  
Charlys Bezerra ◽  
Géssica Santos ◽  
Marilia Pupo ◽  
Maria Gomes ◽  
Ronaldo Silva ◽  
...  

<p>Electrochemical oxidation processes are promising solutions for wastewater treatment due to their high efficiency, easy control and versatility. Mixed metal oxides (MMO) anodes are particularly attractive due to their low cost and specific catalytic properties. Here, we propose an innovative thermal decomposition methodology using <a>polyvinyl alcohol (PVA)</a> as a solvent to prepare Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes. Comparative anodes were prepared by conventional method employing a polymeric precursor solvent (Pechini method). The calcination temperatures studied were 300, 400 and 500 °C. The physical characterisation of all materials was performed by X-ray diffraction and scanning electron microscopy coupled with energy dispersive spectroscopy, while electrochemical characterisation was done by cyclic voltammetry, accelerated service lifetime and electrochemical impedance spectroscopy. Both RuO<sub>2</sub> and IrO<sub>2</sub> have rutile-type structures for all anodes. Rougher and more compact surfaces are formed for the anodes prepared using PVA. Amongst temperatures studied, 300 °C using PVA as solvent is the most suitable one to produce anodes with expressive increase in voltammetric charge (250%) and accelerated service lifetime (4.3 times longer) besides reducing charge-transfer resistance (8 times lower). Moreover, the electrocatalytic activity of the anodes synthesised with PVA toward the Reactive Blue 21 dye removal in chloride medium (100 % in 30 min) is higher than that prepared by Pechini method (60 min). Additionally, the removal total organic carbon point out improved mineralisation potential of PVA anodes. Finally, this study reports a novel methodology using PVA as solvent to synthesise Ti/RuO<sub>2</sub>–IrO<sub>2</sub> anodes with improved properties that can be further extended to synthesise other MMO compositions.</p>


2013 ◽  
Vol 12 (7) ◽  
pp. 1323-1328 ◽  
Author(s):  
Lujun Chen ◽  
Weihua Sun ◽  
Jinping Tian ◽  
Jianlong Wang ◽  
Shijun He

Sign in / Sign up

Export Citation Format

Share Document