Polymer journal
Latest Publications


TOTAL DOCUMENTS

235
(FIVE YEARS 84)

H-INDEX

2
(FIVE YEARS 2)

Published By Co. Ltd. Ukrinformnauka

1818-1724, 1818-1724

2021 ◽  
Vol 43 (4) ◽  
pp. 268-279
Author(s):  
L.V. KARABANOVA ◽  
◽  
L.A. HONCHAROVA ◽  
N.V. BABKINA ◽  
◽  
...  

A series of the nanocomposites based on a multicomponent polymer matrix consisting of polyurethane and poly(hydroxypropyl methacrylate) and 1,2-propanediolysobutyl polyhedral oligomeric silsesquioxane (1,2-propanediolysobutyl-POSS), used as a functionalized nanofiller, was synthesized. The polymer matrix was formed on the principle of interpenetrating polymer networks (IPNs). The influence of 1,2-propanediolysobutyl-POSS amount on the thermodynamics of polymer components of the matrix interactions and on the dynamic mechanical properties of the created nanocomposites was studied. With purpose of the thermodynamic parameters interactions calculations the isothermal sorption of methylene chloride vapour by samples was investigated. The methylene chloride vapour sorption by the samples was studied using a vacuum installation and a McBain balance. By calculations of the thermodynamic parameters of PU and PHPMA interactions was shown that the free energy of PU and PHPMA mixing was positive. The introduction of 1-3 wt % of POSS lead to further phase separation in semi-IPNs. This is due to concentration of POSS particles in the PU’s nanodomains. The increasing of POSS content up to 5-10 wt % lead to compatibi-lization in semi-IPNs. These is due to concentration of POSS nanoparticles not only in the PU’s nanodomains but also in the interphase region of semi-IPN. The dynamic mechanical properties of the created nanocomposites were investigated and the degree of polymer components segregation was calculated. It was shown that there are two peaks of tan δ (PU and PHPMA) in the nanocom-posites. The introduction of 1-3 wt % of POSS lead to increasing of tan δ peak of PHPMA and to deepening of the bridge between two peaks (PU and PHPMA). At the same time the degree of polymer components of the matrix segregation became higher. This means the further phase separation in semi-IPNs. Increasing of 1,2-propanediolysobutyl-POSS amount up to 5-10% leads to the concentration of the nanofiller not only in the nanodomains of PU, but also in the interfacial layers. This leads to a change in the free energy of polymer components mixing, which becomes negative. At the same time the degree of polymer components of the matrix segregation became significantly reduced. These means that the process of compatibilization took part in the semi-IPNs.


2021 ◽  
Vol 43 (4) ◽  
pp. 280-286
Author(s):  
T.D. IGNATOVA ◽  
◽  
L.F. KOSYANCHUK ◽  

This article is devoted to the analysis of the results of the investigation of the process of forming mixtures of linear polymers formed simultaneously in situ according to different mechanisms. The first mechanism is polyaddition, the second mechanism is radical polymerization. This is one of the possible ways to obtain multicomponent polymer systems. The kinetics of chemical reactions of the formation of components and the phase separation which accompanies these reactions were studied for mixtures of poly(methyl methacrylate) (PMMA) with two polyurethanes (PU) of different chemical nature of both flexible and rigid blocks. PU-1 was synthesized from macrodiisocyanate based on oligo(tetramethylene glycol) with molecular mass 1000 g·mol–1 and hexamethylene diisocyanate taken in the molar ratio 1 : 2 using diethylene glycol as a chain extender. PU-2 was synthesized from macrodiisocyanate based on olygo(propylene glycol) with molecular mass 1000 g·mol–1 and toluylene diisocyanate taken in the molar ratio 1 : 2 using butanediol as a chain extender. The mixture of polystyrene (PS) with PU-2 was studied too. It is established that regardless of the chemical nature of the components, the process of in situ mixture formation is subject to general laws. In particular, the change in the chemical nature of the component formed by the mechanism of polyaddition (mixtures PMMA/PU-1 and PMMA/PU-2) or of the component formed by radical polymerization (mixtures PMMA/PU-2 and PS/PU-2) does not affect the nature of the dependence of the conversion degree of components and the fraction of formed polymers at the beginning of the phase separation on the composition of the initial reaction mixtures. Only the absolute values of these parameters change due to different reactivity and different thermodynamic compatibility of the mixed components.


2021 ◽  
Vol 43 (4) ◽  
pp. 304-310
Author(s):  
M.YA. VORTMAN ◽  
◽  
V.N. LEMESHKO ◽  
L.A. GONCHARENKO ◽  
S.M. KOBYLINSKIY ◽  
...  

Oligomeric ionic liquids occupy an intermediate position between low molecular weight and polymeric. They are promising as polymer electrolytes in electrochemical devices for various purposes, membranes for the separation of gas mixtures, in sensor technologies, and so on. Oligomeric guanidinium ionic liquids are practically not described in the literature. In terms of studying the effect of the structure of the epoxy component on the properties of oligomeric ionic liquids of this type, it is advisable to introduce into its composition an aliphatic oligoether component. The choice of aliphatic oligoepoxide for the synthesis of guanidinium oligomeric ionic liquids is based on the fact that it is structurally similar to poly - and oligoethylene oxides, which are known to be non-toxic, biodegradable, and reactive oligomeric ionic liquids at elevated temperatures. A new type of reactive oligomeric proton cationic ionic liquid was synthesized by the reaction of oligomeric aliphatic diepoxide with guanidine, followed by neutralization of the product with hydrochloric acid. In this study, the synthesis of proton cationic oligomeric ionic liquids was based on the introduction of guanidinium fragments as end groups of the oligoether aliphatic chain. This reaction is attractive because of the ease of opening the oxirane ring with such a strong nucleophile as guanidine.The reaction forms a fragment with an aliphatic C-N bond, which retains the high basicity of the nitrogen atom. Its structure is characterized by the presence of guanidinium groups at the ends of the aliphatic hydroxyl-containing oligoether chain. The chemical structure of this compound is characterized by IR -, 1H ,13 C NMR spectroscopy methods, and its molecular mass characteristics are determined.The average molecular weight of the synthesized oligomeric ionic liquids is 610 g / mol.The value of the coefficient of polydispersity of the synthesized oligomeric ionic liquids is equal to 1.2. Determination of the content of amino groups in the guanidine-containing oligomer in the basic form by titrometric method allowed to establish that the value found is close to the theoretically calculated value. The synthesized oligomeric proton ionic liquid is characterized by an amorphous structure with two glass transition temperatures. The first lies in the range -70 °C, the second in the region of 70 °C, and the beginning of thermal oxidative destruction is located in the region of 148 °C. The temperature dependence of the ionic conductivity for this compound is nonlinear in the Arrhenius coordinates, which indicates the realization of ionic conductivity mainly due to the free volume in the system. The proton conductivity of this compound is 6.4·10-5–1·10-2Cm/cmin the range of 20–100 °C. The obtained compound exhibits surface-active properties characteristic of classical surfactants, as evidenced by the value of the limiting surface activity – 2.8·102 Nm2 / kmol. The value of CCM is 1.8·10-2 mol/l., and the value of the minimum surface tension – 37.70 mN / m. The synthesized oligomeric ionic liquid is of interest as electrolytes operating under anhydrous conditions, surfactants, disinfectants, and starting reagents for the synthesis of ion-containing blockopolymers.


2021 ◽  
Vol 43 (4) ◽  
pp. 240-250
Author(s):  
Ye.P. Mamunya ◽  

This review highlight approaches to the formation of an ordered distribution of conductive filler in polymer blends. This distribution leads to a significant decrease of the percolation threshold in the polymer mixture, i.e. to a decrease in the critical concentration of the filler, at which the transition of the system from a non-conductive to a conductive state occurs. This improves the mechanical properties of the composition and its processability. It is shown that the ordered structure of the filler is formed in the polymer blend upon mixing the components in the melt under the action of three factors - thermodynamic (the ratio between the values of the interfacial tension of the filler-polymer A and filler-polymer B, as well as between polymers A and B), kinetic (the ratio between viscosities of polymer components A and B) and technological (the intensity and temperature of processing, as well as the order of introduction of a filler into a heterogeneous polymer matrix, which can enhance or suppress the effect of thermodynamic or kinetic factors). On the example of the works performed by the author on mixtures of thermoplastics filled with electrically conductive carbon fillers such as carbon black and carbon nanotubes, as well as a metal filler - dispersed iron, with the involvement of literature data on filled polymer blends, the influence of each of the factors on the formation of an ordered structure of the conducting phase in polymer blends is shown.


2021 ◽  
Vol 43 (4) ◽  
pp. 251-267
Author(s):  
V.F. SHUMSKY ◽  
◽  
I.P. GETMANCHUK ◽  
L.F. KOSYANCHUK ◽  
T.D. IGNATOVA ◽  
...  

Based on the experimental data on the rheology of dispersions of hydrophobic aerosil (Am) in a low molecular weight hydrocarbon medium, the possibility of using a «micellar» mechanism for the formation of a bulk structure for such dispersions is considered. A model of such a structure before, during and after shear deformation is proposed, which makes it possible to interpret experimental data on the rheology of dispersed systems. The results of the study of rheokinetics are presented in a new visio – from the point of view of self-organization under the influence of the shear field. The PMMA–PU–Am system was considered as a polymer composite (PC), in which the matrix is the poly(methyl methacrylate) (PMMA) being modified, and the dispersed phase is a mixture of polyurethane (PU) with Am. It has been shown that during the reaction formation of this composition, the conditions of shear deformation of the system correspond to those at which self-organization and fixation of the coagulation rheopex structure of the nanofiller in PC is possible at the moment of reaching very high viscosity values (gel-point), when diffusion processes will be practically frozen. Two concentration regions of Am were predicted (before and after the percolation threshold), where an enhancement of the mechanical characteristics of PMMA can be expected. The relationship between the rheokinetics of the formation of a linear PMMA–crosslinked PU mixture in the presence of different amounts of oligomeric azo-initiator containing fragments of the polyurethane chain and groups capable of initiating radical polymerization of methyl methacrylate and the process of phase separation, morphology and mechanical properties of the final products has been established. It was shown that the time of phase separation and gelation are interrelated and there is in a simple dependence on the concentration of the azo-initiator. Such an initiator affects the structural-rheological transitions in the system and leads to the formation of morphology with smaller domains. The most stable system with the best dispersion of polyurethane in polymethyl methacrylate is a mixture containing 0.002 mol/L of azo-initiator, which has improved mechanical properties and increased impact viscosity.


2021 ◽  
Vol 43 (4) ◽  
pp. 295-303
Author(s):  
N.V. KOZAK ◽  
◽  
T.A. SHANTALII ◽  

The physical aging was investigated of obtained by sol-gel technology nanocomposites based on polyimide (PI) with card substituents and tetraethoxysylane (TEOS). The results for organic-inorganic composites, that contain of 5%. 20% or 50 % of TEOS, demonstrate that at temperatures well below (400K) the glass transition temperature of the polymer can take place changes in the dynamic characteristics of polymer macrochains and its permeability to low molecular probe as well as changes in aggregation of inorganic component. According to the methods of EPR, optical microscopy, etc. changes that occur in the characteristics of sol-gel polyimide based nanocomposites during long-term storage at temperatures much lower than the glass transition temperature of the polymer can be described as follows. The segmental mobility of the organic component is significantly reduced and the dynamic heterogeneity of the polymer increases. The decrease in the relative permeability of aged nanocomposites with increased content of inorganic component as compared with aged pure PI does not correlate with the content of TEOS in contrast to the initial samples of the same composition. PI macrochains chemically bonded to the inorganic phase have limited ability to realize an optimal conformation in the process of thermal relaxation (physical aging) so the increasing the content of the inorganic component has less effect on reducing the permeability of aged composites compared to aged pure PI. This is consistent with changes in the distribution of inorganic aggregates of composites. There are changes in the mean size of aggregates of inorganic particles in the composite and a decrease in their number. Smoothing is observed of the surface of nanocomposite films as well as disappearance of inhomogeneities caused by the surface of support. Due to the chemical bonding of inorganic particles and polyimide matrix, the peculiarities of the physical aging process of such composites are due to the mutual influence of the inorganic and polymer components.


2021 ◽  
Vol 43 (4) ◽  
pp. 287-294
Author(s):  
N.V. YAROVA ◽  
◽  
T.F. SAMOILENKO ◽  
L.M. YASHCHENKO ◽  
O.O. BROVKO ◽  
...  

The distinct features of UV induced polymerization of epoxy-acrylate blends leading to the formation of simultaneous interpenetrating polymer networks (IPNs) have been studied. Different ratios of components within a prevailing content of an epoxy one have been used for the synthesis. Such a content of epoxy monomer is required to create a barrier preventing oxygen diffusion into a curing sample. It allows retardation of the well-known oxygen-inhibition effect, which acrylate monomers are susceptible to. Hence, the conduction of their polymerization in open-air conditions is possible. The proceeding of the polymerization reactions of acrylate (TEGDM) via free radical mechanism and of epoxy (UP-650D) via cationic one have been monitored by FTIR-spectroscopy. Namely, the conversion degrees have been calculated for double bonds of TEGDM and for epoxy groups of UP-650D respectively. A mixture of triphenylsulfonium hexafluorophosphate salts, which is capable of generating both free radical and cationic reactive species, have been used as a single photoinitiator for the formulations being investigated. Almost complete conversion of acrylate double bonds was reached after 60 min of UV irradiation irrespective of epoxy content. On the contrary, conversion of epoxy groups of aliphatic epoxy, which is known to be rather unreactive towards cationic photopolymerization, when mixed may be either higher or lower compared to the neat epoxy network. Such results are attributed to dual influence of acrylate network on the formation of epoxy one. Firstly, cationic polymerization of epoxy component is sensitized by acrylate macroradicals in terms of free radical promoted cationic polymerization. On the other hand, the mobility of epoxy macrocations is restricted by the rapid build-up of acrylate network. At the weight ratio of UP-650D and TEGDM 70/30 the sensitizing effect of acrylate is revealed to be dominant, so the given composition may be considered as optimal. Regardless of low conversion of epoxy groups, the content of the estimated gel fraction is high, and the epoxy component is found not to be leached in the process of extraction in acetone. Furthermore, physicomechanical properties of obtained UV-cured IPNs have been investigated. The results of the measurements, namely, impact resistance by the Gardner test, crosshatch adhesion test to different substrates (including silicon), and accelerated weathering test in a climatic chamber, show that all the samples exhibit good operational properties essential for effective protecting coatings of outdoor exposure.


2021 ◽  
Vol 43 (3) ◽  
pp. 198-203
Author(s):  
S.M. KUZMENKO ◽  
◽  
E.O. SPORYAGIN ◽  
O.M. KUZMENKO ◽  
A.YA. PUZENKO ◽  
...  

The paper describes the synthesis, the reaction of a mixture of isomers (2,4–2,6) of toluilendiisocyanate with a double molar excess of aliphatic individual or oligomeric diols, a number of previously unknown oligodiuretanediols and their physicochemical constants. It is shown that with an increase in the synthesis temperature from 50 to 70 °C, the reaction time to complete depletion in the mixture of free NCO-groups decreases from 8–9 hours to 3–4 hours. The reaction temperature of 70–2 °С should be considered optimal, because at higher temperatures side reactions of free NCO-groups with already formed urethane ones are possible. Because the presence of even a small amount of moisture in the diols can provoke side effects during the urethane formation reaction, all of the above diols were dried from the adsorbed moisture by azeotropic distillation with toluene before use in the reaction. Since the final products are even at the synthesis temperature (68–70 °C) viscous liquids, and there are difficulties with the homogenization of the reaction mass during synthesis, and when unloading the finished product from the reaction plant, in all cases, the synthesis was performed in solution cyclohexanone by 50 % by weight of the final product. Control of the reaction was performed by changing the % wt. free NCO-groups in time. The reaction was considered complete if the measured % wt. free NCO-groups in the reaction mixture for at least one hour twice showed zero. The isolated oligodiuretanediols range from solid at room temperature to very viscous products, which significantly depends on the molecular weight of the diol used in the reaction (ie the concentration of urethane groups formed). They are homogeneous, transparent compounds that are readily soluble in esters, ethers, aromatic and halide-containing, aprotic solvents, ketones, poorly or completely insoluble in aliphatic saturated hydrocarbons. The structure of the synthesized oligomeric products is confirmed by functional analysis, IR–spectra. In the IR-spectra of each of the synthesized oligodiuretanediols there are no absorption bands in the region of 2270 cm-1, which confirms the complete completion of the reaction of urethane formation according to the scheme. At the same time, the absorption bands in the region of 3450 cm-1, 1720 cm-1, 1540 cm-1 are fixed, which are characteristic of the presence of urethane groups in the structure of the target products. As the chain length of the diol component –R– increases in the target product (which synchronously leads to an increase in molecular weight), the intensity of these absorption bands decreases, which is associated with a decrease in the concentration of formed urethane groups in the structure of oligodiuretanediols. The refractive index also decreases synchronously. Synthesized series of oligodiuretanediols can be used for synthesis on its basis of other classes of oligomers with the simultaneous presence in the structure of urethane groups. The ability of such compounds to be soluble in solvents of different nature has been studied, which provides information for the directions of their further use (varnishes, enamels, primers).


2021 ◽  
Vol 43 (3) ◽  
pp. 204-213
Author(s):  
T.V. VISLOHUZOVA ◽  
◽  
R.A. ROZHNOVA ◽  
N.A. GALATENKO ◽  
◽  
...  

The article is devoted to the development and research of the structure and properties of polyurethane foam (PUF) composite materials with the antibacterial enzyme lysozyme. A series of PUF composite materials with lysozyme of various concentrations (1, 3 and 5 wt %) were obtained. It is established that the immobilization of lysozyme occurs due to intermolecular hydrogen bonds by the method of IR spectroscopy. According to the results of physical-mechanical tests the adhesive strength of polyurethane foam compositions with lysozyme is in the range of 0,82–1,16 MPa. The introduction of lysozyme into the composition of polyurethane foams and an increase its amount causes a decrease in the values of adhesion strength by 18,1–29,3 %. According to differential scanning calorimetry the tested systems are single-phase with a glass transition temperature in the range of -49,20 to -49,86 °C. The introduction of lysozyme into the composition causes an increase heating capacity at the glass transition, which can be associated with a decrease of the packing density of macrochains resulting in an increase in free volume, which leads to an increase molecular mobility. According to the results of the analysis of transmission optical microscopy micrographs the studied PUF have a microporous structure, which depends on the content of filler in their composition. It was found that the presence of lysozyme in the composition of composite materials leads to a decrease in the percentage of porosity, an increase in the number of pores with a diameter of up to 300 μm, which is 76,7–82,4 % (while for PUF – 69,5 %) and the absence of pores with a diameter larger than 990 μm. Thermogravimetric characteristics indicate the heat resistance of the synthesized PUF to a temperature of 179,95 °C, which allows dry sterilization of samples without changing their characteristics. PUF composite materials with lysozyme are promising materials that can be used in medical practice as polymer compositions for the treatment of wounds and burns.


2021 ◽  
Vol 43 (3) ◽  
pp. 190-197
Author(s):  
V.D. MYSHAK ◽  
◽  
V.V. SEMINOG ◽  
N.V. KOZAK ◽  
◽  
...  

The aim of this work was to investigate the influence of the chemical nature of the filler surface on the properties of hybrid organo-inorganic nanocomposites based on epoxy oligomer ED-20 in the presence of nanoscale functional filler of inorganic origin - aerosil, with different surface nature. The influence of the chemical nature of the surface of highly dispersed aerosil on the thermal properties of nanocomposites based on epoxy oligomer ED-20 has been studied. The peculiarities of the process of thermooxidative destruction have been studied. It is shown that the introduction of highly dispersed aerosil in the amount of 0.5% in the epoxy matrix does not lead to changes in the thermal properties of composites, and the nanofiller in the amount of 5% improves thermal stability of composites. The kinetics of the curing process of epoxy nanocomposites was studied by IR-spectroscopy. The influence of the presence of functional groups on the nanofiller surface on rate and the degree of conversion of epoxy groups was determined. The presence of hydroxyl groups on the surface of A-300 contributes to the rate of conversion of epoxy groups to a greater extent, compared with aerosil with a modified surface, which contains on the surface methyl groups capable of blocking reactive groups. It is established that the rate of conversion of epoxy groups in the presence of aerosil decreases in the range of ED-20 > ED-20 + A-300 > ED-20 + AM-300. The sorption properties of epoxy nanocomposites have been studied. It is established that the sorption process proceeds at a higher rate when the matrix is filled with unmodified aerosil. The mechanism of influence of the chemical nature of the filler surface and content on formation and properties of epoxy nanocomposites is discussed.


Sign in / Sign up

Export Citation Format

Share Document