elastic recoil
Recently Published Documents


TOTAL DOCUMENTS

863
(FIVE YEARS 82)

H-INDEX

57
(FIVE YEARS 4)

2022 ◽  
Vol 23 (2) ◽  
pp. 683
Author(s):  
Katalin Kauser ◽  
Kevin S. Warner ◽  
Blake Anderson ◽  
Edgar Dalles Keyes ◽  
RB Hayes ◽  
...  

The development of bioscaffolds for cardiovascular medical applications, such as peripheral artery disease (PAD), remains to be a challenge for tissue engineering. PAD is an increasingly common and serious cardiovascular illness characterized by progressive atherosclerotic stenosis, resulting in decreased blood perfusion to the lower extremities. Percutaneous transluminal angioplasty and stent placement are routinely performed on these patients with suboptimal outcomes. Natural Vascular Scaffolding (NVS) is a novel treatment in the development for PAD, which offers an alternative to stenting by building on the natural structural constituents in the extracellular matrix (ECM) of the blood vessel wall. During NVS treatment, blood vessels are exposed to a photoactivatable small molecule (10-8-10 Dimer) delivered locally to the vessel wall via an angioplasty balloon. When activated with 450 nm wavelength light, this therapy induces the formation of covalent protein–protein crosslinks of the ECM proteins by a photochemical mechanism, creating a natural scaffold. This therapy has the potential to reduce the need for stent placement by maintaining a larger diameter post-angioplasty and minimizing elastic recoil. Experiments were conducted to elucidate the mechanism of action of NVS, including the molecular mechanism of light activation and the impact of NVS on the ECM.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8386
Author(s):  
Lars Thormählen ◽  
Dennis Seidler ◽  
Viktor Schell ◽  
Frans Munnik ◽  
Jeffrey McCord ◽  
...  

For the best possible limit of detection of any thin film-based magnetic field sensor, the functional magnetic film properties are an essential parameter. For sensors based on magnetostrictive layers, the chemical composition, morphology and intrinsic stresses of the layer have to be controlled during film deposition to further control magnetic influences such as crystallographic effects, pinning effects and stress anisotropies. For the application in magnetic surface acoustic wave sensors, the magnetostrictive layers are deposited on rotated piezoelectric single crystal substrates. The thermomechanical properties of quartz can lead to undesirable layer stresses and associated magnetic anisotropies if the temperature increases during deposition. With this in mind, we compare amorphous, magnetostrictive FeCoSiB films prepared by RF and DC magnetron sputter deposition. The chemical, structural and magnetic properties determined by elastic recoil detection, X-ray diffraction, and magneto-optical magnetometry and magnetic domain analysis are correlated with the resulting surface acoustic wave sensor properties such as phase noise level and limit of detection. To confirm the material properties, SAW sensors with magnetostrictive layers deposited with RF and DC deposition have been prepared and characterized, showing comparable detection limits below 200 pT/Hz1/2 at 10 Hz. The main benefit of the DC deposition is achieving higher deposition rates while maintaining similar low substrate temperatures.


2021 ◽  
Vol 176 (12) ◽  
Author(s):  
Johannes Hammerli ◽  
Jörg Hermann ◽  
Peter Tollan ◽  
Fabian Naab

AbstractWe present a new approach to determine in situ CO2 and H2O concentrations in apatite via attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Absolute carbon and hydrogen measurements by nuclear reaction analysis (NRA) and elastic recoil detection (ERD) are used to calibrate ATR-FTIR spectra of CO2 and H2O in apatite. We show that CO2 and H2O contents in apatite can be determined via linear equations (r2 > 0.99) using the integrated area of CO2 and H2O IR absorption bands. The main benefits of this new approach are that ATR-FTIR analyses are non-destructive and can be conducted on polished sample material surfaces with a spatial resolution of ~ 35 μm. Furthermore, the wavenumber of the phosphate IR absorption band can be used to determine the crystallographic orientation of apatite, which allows for accurate quantification of CO2 and H2O in randomly orientated apatite grains. The limit of quantification of H2O in apatite is ~ 400 ppm and ~ 100 ppm for CO2. Via two examples, one from a carbonatite and one from a metasedimentary rock, we show that this new technique opens up new possibilities for determining volatile concentrations and behavior in a wide range of hydrothermal, igneous, and metamorphic systems.


Author(s):  
Elizabeth Mendoza ◽  
Emanuel Azizi

Elastic recoil drives some of the fastest and most powerful biological movements. For effective use of elastic recoil, the tuning of muscle and spring force capacity is essential. While studies of invertebrate organisms that use elastic recoil show evidence of increased force capacity in their energy loading muscle, changes in the fundamental properties of such muscles have yet to be documented in vertebrates. Here we used three species of frogs (Cuban tree frogs, bullfrogs, and cane toads) that differ in jumping power to investigate functional shifts in muscle-spring tuning in systems using latch-mediated spring actuation (LaMSA). We hypothesized that variation in jumping performance would result from increased force capacity in muscles and relatively stiffer elastic structures resulting in greater energy storage. To test this, we characterized the force-length property of the plantaris longus muscle-tendon unit (MTU), and quantified the maximal amount of energy stored in elastic structures for each species. We found that the plantaris longus MTU of Cuban tree frogs produced higher mass-specific energy and mass-specific forces than the other two species. Moreover, we found that the plantaris longus MTU of Cuban tree frogs had higher pennation angles than the other species suggesting that muscle architecture was modified to increase force capacity through packing of more muscle fibers. Finally, we found that the elastic structures were relatively stiffer in Cuban tree frogs. These results provide a mechanistic link between the tuned properties of LaMSA components, energy storage capacity and whole system performance.


2021 ◽  
Vol 5 (11) ◽  
Author(s):  
Atit A Gawalkar ◽  
Navreet Singh ◽  
Ankush Gupta ◽  
Parag Barwad

Abstract Background Coronary artery perforation (CAP), although rare, can often be a life-threatening complication of percutaneous coronary intervention. Looped wire tip or buckling of wire is conventionally considered safer due to reduced risk of migration into smaller branches and false lumen. Occasionally, buckling can indicate the entry of tip into dissection plane, or the advancement of looped wire can cause small vessel injury leading to perforation. Distal coronary perforation can be life threatening and coil, foam, and thrombin injection are some of the material widely used for sealing it. Case summary We hereby report three different cases illustrating the vessel injury that the looped wire can cause in the distal vasculature related to various mechanisms like high elastic recoil tension, dissection by the non-leading wire tip, or hard wire lacerating the fragile small branches. All these mechanisms lead to distal coronary perforation leading to cardiac tamponade. Each case also illustrate the novel technique of autologous fat globule embolization for the management of distal CAP. Discussion Distal coronary perforation is often due to guidewire-related vessel injury and is more common with hydrophilic wires. Looped wire tip can sometime indicate vessel injury and its advancement further down the coronary artery may result in serious vessel injury and perforation. Management of distal coronary perforation is challenging, and here we demonstrate the steps of using the readily available autologous fat globules by selectively injecting them into the small coronary artery to control the leak.


Author(s):  
Anupam Bhambhani ◽  
Amey Joshi

AbstractPercutaneous balloon venoplasty is widely employed for the management of central vein stenosis (CVS), a condition frequently encountered in patients on maintenance hemodialysis (MHD). The hypertrophied and fibrotic venous stenotic lesions often pose a challenge for interventionists, due to resistance to dilatation and high-elastic recoil. We report here successful utilization of mitral valvuloplasty balloon for percutaneous treatment of an unyielding brachiocephalic vein stenosis. Repeated failure of conventionally used peripheral balloon dilatation catheter prompted the use of a mitral valvuloplasty balloon that could exert higher radial pressure while preventing melon-seeding and hence successfully achieve stenosis dilatation. The mitral valvuloplasty balloon can be effectively and safely used for lesions resistant to repeated dilatations by conventional peripheral balloons. Rheological stress on central veins from ipsilateral arteriovenous fistula (AVF) may result in development of stenotic lesions, even in the absence of prior venous catheterization of the affected vein; therefore, in the presence of relevant symptoms, this diagnosis should not be excluded on the basis of absence of prior direct trauma at the stenosis site.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6016
Author(s):  
Žiga Donik ◽  
Branko Nečemer ◽  
Matej Vesenjak ◽  
Srečko Glodež ◽  
Janez Kramberger

Bioresorbable stents (BRS) represent the latest generation of vascular scaffolds used for minimally invasive interventions. They aim to overcome the shortcomings of established bare-metal stents (BMS) and drug-eluting stents (DES). Recent advances in the field of bioprinting offer the possibility of combining biodegradable polymers to produce a composite BRS. Evaluation of the mechanical performance of the novel composite BRS is the focus of this study, based on the idea that they are a promising solution to improve the strength and flexibility performance of single material BRS. Finite element analysis of stent crimping and expansion was performed. Polylactic acid (PLA) and polycaprolactone (PCL) formed a composite stent divided into four layers, resulting in sixteen unique combinations. A comparison of the mechanical performance of the different composite configurations was performed. The resulting stresses, strains, elastic recoil, and foreshortening were evaluated and compared to existing experimental results. Similar behaviour was observed for material configurations that included at least one PLA layer. A pure PCL stent showed significant elastic recoil and less shortening compared to PLA and composite structures. The volumetric ratio of the materials was found to have a more significant effect on recoil and foreshortening than the arrangement of the material layers. Composite BRS offer the possibility of customising the mechanical behaviour of scaffolds. They also have the potential to support the fabrication of personalised or plaque-specific stents.


2021 ◽  
Vol 7 (2) ◽  
pp. 656-659
Author(s):  
Kerstin Lebahn ◽  
Kerstin Stöffler ◽  
Stefan Oschatz ◽  
Daniela Arbeiter ◽  
Thomas Reske ◽  
...  

Abstract The novel concept of stenting the Eustachian tube was established to provide an effective and safe therapy of Eustachian tube dysfunction. Biodegradable polymer stents are being developed to restore impaired tube function. As the supporting effect may be required for different time periods, PLA-co-PEG copolymers, PLLGA, PDLLA and PDS, having shorter degradation times compared to PLLA, were evaluated as potential stent materials. Since tensile tests and thermal analyses of solvent cast films from PLA-co-PEG copolymers showed comparable properties to PLLA, stent samples were manufactured from these materials. Mechanical stent testing revealed an increase of elastic recoil and slight decrease of collapse pressure compared to PLLA. In a short term accelerated degradation study a considerable percentage molar mass reduction and an increasing degree of crystallinity depending on PEG content was found. Based on the results obtained, the tested polymers offer a promising, faster degradable alternative to the established stent material PLLA.


Author(s):  
R. Escobar-Galindo ◽  
I. Heras ◽  
E. Guillén ◽  
F. Munnik ◽  
I. Azkona ◽  
...  

AbstractThe thermal stability of two AlyTi1-y(OxN1-x) layers prepared by cathodic vacuum arc deposition with different oxygen content was studied after high temperature annealing of the samples in air. These layers were designed to be part of solar-selective coating (SSC) stacks. Compositional and microstructural characterization of the thin films was performed before and after the thermal treatment by elastic recoil detection (ERD), transmission electron microscopy, and Raman spectroscopy. AlyTi1-yN sample was stable after 2 h of annealing at 450 °C. Initial stages of the formation of a surface oxide layer after annealing at 650 °C were observed both by ERD and Raman analysis. Contrarily, no changes were found after 2 h annealing treatment either at 450 and 650 °C in the composition and microstructure of AlyTi1-y(OxN1-x) sample. In both samples, the formation of a surface anatase TiO2 film was reported after 2 h annealing at 800 °C. These compositional and microstructural changes were correlated with the optical properties determined by spectroscopic ellipsometry. A transition from metallic to dielectric behavior with increasing annealing temperature was observed. These results complete the durability studies on the designed SSC based on AlyTi1-y(OxN1-x) materials, confirming that these stacks withstand breakdown at 600 °C in air.


Sign in / Sign up

Export Citation Format

Share Document