laser sintering
Recently Published Documents


TOTAL DOCUMENTS

2392
(FIVE YEARS 645)

H-INDEX

83
(FIVE YEARS 13)

Author(s):  
S Rashia Begum ◽  
M Saravana Kumar ◽  
M Vasumathi ◽  
Muhammad Umar Farooq ◽  
Catalin I Pruncu

Additive manufacturing is revolutionizing the field of medical sciences through its key application in the development of bone scaffolds. During scaffold fabrication, achieving a good level of porosity for enhanced mechanical strength is very challenging. The bone scaffolds should hold both the porosity and load withstanding capacity. In this research, a novel structure was designed with the aim of the evaluation of flexible porosity. A CAD model was generated for the novel structure using specific input parameters, whereas the porosity was controlled by varying the input parameters. Poly Amide (PA 2200) material was used for the fabrication of bone scaffolds, which is a biocompatible material. To fabricate a novel structure for bone scaffolds, a Selective Laser Sintering machine (SLS) was used. The displacement under compression loads was observed using a Universal Testing Machine (UTM). In addition to this, numerical analysis of the components was also carried out. The compressive stiffness found through the analysis enables the verification of the load withstanding capacity of the specific bone scaffold model. The experimental porosity was compared with the theoretical porosity and showed almost 29% to 30% reductions when compared to the theoretical porosity. Structural analysis was carried out using ANSYS by changing the geometry. Computational Fluid Dynamics (CFD) analysis was carried out using ANSYS FLUENT to estimate the blood pressure and Wall Shear Stress (WSS). From the CFD analysis, maximum pressure of 1.799 Pa was observed. Though the porosity was less than 50%, there was not much variation of WSS. The achievement from this study endorses the great potential of the proposed models which can successfully be adapted for the required bone implant applications.


2022 ◽  
Vol 1049 ◽  
pp. 69-74
Author(s):  
Evgeny Remshev ◽  
Vitaly Ignatenko ◽  
Sergey Voinash ◽  
Irina Teterina ◽  
Vladimir Malikov ◽  
...  

The effect of cold isostatic pressing of EP648 alloy after selective laser sintering is researched. The effect of cold isostatic pressing on the porosity of the structure of a material manufactured by additive technologies (AT) has been established. It is proposed to consider cold isostatic pressing as a method of subsequent treatment of products ("post-treatment") made by selective laser sintering.


Author(s):  
Marcos Batistella ◽  
Ouassila Kadri ◽  
Arnaud Regazzi ◽  
Monica Francesca Pucci ◽  
José-Marie Lopez-Cuesta ◽  
...  
Keyword(s):  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alicia Salazar ◽  
Alberto Jesús Cano Aragón ◽  
Jesús Rodríguez

Purpose Polyamide 12 (PA12) processed by the additive manufacturing technique of selective laser sintering (SLS) is acquiring a leading role in cutting-edge technological sectors pertaining to transport and biomedical among others. In many of these applications, design requirements must ensure fatigue structural integrity. One of the characteristic features of these SLS PA12 is the layer-wise structure that may influence the mechanical response. Therefore, this paper aims to assess the fatigue life behavior of PA12, focusing on the effect of the load direction with respect to the load orientation. Design/methodology/approach With the aim of analyzing the effect of the load direction with respect to the layer wise structure, fatigue tests on plain samples of SLS PA12 were carried out with the load applied parallel and perpendicular to the layer planes. The S-N stress life curves and the fatigue limit at 106 cycles were determined at room temperature and at a stress ratio of 0.1. The fracture surfaces were inspected to evaluate the damage evolution, modeled via the fracture mechanics methodology to obtain the fracture parameters. Findings The fatigue resistance was better when the load was applied parallel than when was applied perpendicularly to the layered structure. The analysis of the postmortem specimens evidenced three regions. The inspection of the fatigue macro crack growth region revealed that crazing was the mechanism responsible of nucleation and growth of damage till a macroscopic crack was generated, as well as of the consequent crack advancement. The calculated fracture parameters computed from the application of the fracture mechanics approach were similar to those obtained from standardized fracture tests, except when the stress levels were close to the yield strength. Originality/value The fatigue knowledge of polymers, and especially of polymers processed via additive manufacturing techniques, is still scarce. Therefore, the value of this investigation is not only to obtain fatigue data that could be used for structural design with SLS PA12 materials but also to advance in the knowledge of damage evolution during the fatigue process.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 227
Author(s):  
Kirill Khabarov ◽  
Messan Nouraldeen ◽  
Sergei Tikhonov ◽  
Anna Lizunova ◽  
Olesya Seraya ◽  
...  

In this paper, we investigated the interaction of nanosecond pulsed-periodic infrared (IR) laser radiation at a 50 and 500 Hz repetition rate with aerosol platinum (Pt) and silver (Ag) nanoparticles agglomerates obtained in a spark discharge. Results showed the complete transformation of Pt dendrite-like agglomerates with sizes of 300 nm into individual spherical nanoparticles directly in a gas flow under 1053 nm laser pulses with energy density 3.5 mJ/cm2. Notably, the critical energy density required for this process depended on the size distribution and extinction of agglomerates nanoparticles. Based on the extinction cross-section spectra results, Ag nanoparticles exhibit a weaker extinction in the IR region in contrast to Pt, so they were not completely modified even under the pulses with energy density up to 12.7 mJ/cm2. The obtained results for Ag and Pt laser sintering were compared with corresponding modification of gold (Au) nanoparticles studied in our previous work. Here we considered the sintering mechanisms for Ag, Pt and Au nanoparticles agglomerates in the aerosol phase and proposed the model of their laser sintering based on one-stage for Pt agglomerates and two-stage shrinkage processes for Au and Ag agglomerates.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 183
Author(s):  
Federico Lupone ◽  
Elisa Padovano ◽  
Francesco Casamento ◽  
Claudio Badini

Selective laser sintering (SLS) is a powder bed fusion technology that uses a laser source to melt selected regions of a polymer powder bed based on 3D model data. Components with complex geometry are then obtained using a layer-by-layer strategy. This additive manufacturing technology is a very complex process in which various multiphysical phenomena and different mechanisms occur and greatly influence both the quality and performance of printed parts. This review describes the physical phenomena involved in the SLS process such as powder spreading, the interaction between laser beam and powder bed, polymer melting, coalescence of fused powder and its densification, and polymer crystallization. Moreover, the main characterization approaches that can be useful to investigate the starting material properties are reported and discussed.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 132
Author(s):  
Răzvan Păcurar ◽  
Petru Berce ◽  
Anna Petrilak ◽  
Ovidiu Nemeş ◽  
Cristina Ştefana Miron Borzan ◽  
...  

The authors wish to make the following correction to their paper [...]


2021 ◽  
Vol 10 (17) ◽  
pp. e162101724429
Author(s):  
Lucas José de Azevedo-Silva ◽  
Brunna Mota Ferrairo ◽  
Renato José Berro-Filho ◽  
Fernanda Ferruzzi Lima ◽  
José Henrique Rubo

Marginal and internal adaptation are parameters of crucial importance to the success of prosthetic crowns. Automatized process creates an expectative of superior or equivalent results compared to restorations manufactured ​​by conventional lost-wax technique. The purpose of this study was to evaluate the marginal adaptation and internal adaptation (cement space) of metal-ceramic crown copings produced by lost-wax (LW) and direct metal laser sintering (DMLS) techniques. An artificial lower first molar was prepared for a full crown, duplicated in plaster and scanned. Twenty metal-ceramic crown copings were fabricated in cobalt-chromium by the two techniques (n=10). The copings were filled with low viscosity silicone and seated on the prepared tooth, resulting in a replica of the internal space. The pellicle formed was embedded in heavy body silicone, sectioned and captured by means of a stereomicroscope at 50x magnification, according to replica technique (RT). Shapiro-Wilk test followed by Holm-Sidak test were used for statistical analysis (α=.05). Marginal adaptation presented no difference between LW (101.5 ± 41.6) and DMLS (86.3 ± 39.9) groups (p=0.24). Conventional LW technique showed significantly lower occlusal (p<0.008) and axial spaces (p<0.03).  Measurements of all regions showed numerically larger adaptation values than that defined during design​​ for DMLS group. Both the LW technique and the DMLS technique are within the clinically acceptable.


JOM ◽  
2021 ◽  
Author(s):  
Sven Helge Klippstein ◽  
Florian Heiny ◽  
Nagaraju Pashikanti ◽  
Monika Gessler ◽  
Hans-Joachim Schmid

AbstractConfidence in additive manufacturing technologies is directly related to the predictability of part properties, which is influenced by several factors. To gain confidence, online process monitoring with dedicated and reliable feedback is desirable for every process. In this project, a powder bed monitoring system was developed as a retrofit solution for the EOS P3 laser sintering machines. A high-resolution camera records each layer, which is analyzed by a Region-Based Convolutional Neural Network (Mask R-CNN). Over 2500 images were annotated and classified to train the network in detecting defects in the powder bed at a very high level. Each defect is checked for intersection with exposure areas. To distinguish between acceptable imperfections and critical defects that lead to part rejection, the impact of these imperfections on part properties is investigated.


Sign in / Sign up

Export Citation Format

Share Document