Signal-to-noise ratio comparison of phased-array vs. implantable coil for rat spinal cord MRI

2007 ◽  
Vol 25 (8) ◽  
pp. 1215-1221 ◽  
Author(s):  
Andrew C. Yung ◽  
Piotr Kozlowski
2021 ◽  
Vol 9 ◽  
Author(s):  
Cameron E. Nowikow ◽  
Paul Polak ◽  
Norman B. Konyer ◽  
Natalia K. Nikolova ◽  
Michael D. Noseworthy

Sodium is one of the most abundant physiological cations and is a key element in many cellular processes. It has been shown that several pathologies, including degenerative brain disorders, cancers, and brain traumas, express sodium deviations from normal. Therefore, sodium magnetic resonance imaging (MRI) can prove to be valuable for physicians. However, sodium MRI has its limitations, the most significant being a signal-to-noise ratio (SNR) thousands of times lower than a typical proton MRI. Radiofrequency coils are the components of the MRI system directly responsible for signal generation and acquisition. This paper explores the intrinsic properties of a Koch snowflake fractal radiofrequency surface coil compared to that of a standard circular surface coil to investigate a fractal geometry’s role in increasing SNR of sodium MRI scans. By first analyzing the network parameters of the two coils, it was found that the fractal coil had a better impedance match than the circular coil when loaded by various anatomical regions. Although this maximizes signal transfer between the coil and the system, this is at the expense of a lower Q, indicating greater signal loss between the tissue and coil. A second version of each coil was constructed to test the mutual inductance between the coils of the same geometry to see how they would behave as a phased array. It was found that the fractal coils were less sensitive to each other than the two circular coils, which would be beneficial when constructing and using phased array systems. The performance of each coil was then assessed for B1+ field homogeneity and signal. A sodium phantom was imaged using a B1+ mapping sequence, and a 3D radial acquisition was performed to determine SNR and image quality. The results indicated that the circular coil had a more homogeneous field and higher SNR. Overall while the circular coil proved to generate a higher signal-to-noise ratio than the fractal, the Koch coil showed higher versatility when in a multichannel network which could prove to be a benefit when designing, constructing, and using a phased array coil.


Author(s):  
Daniele De Marchi ◽  
Alessandra Flori ◽  
Nicola Martini ◽  
Giulio Giovannetti

Background: Cardiac magnetic resonance evaluations generally require a radiofrequency coil setup comprising a transmit whole-body coil and a receive coil. In particular, radiofrequency phased-array coils are employed to pick up the signals emitted by the nuclei with high signal-tonoise ratio and a large region of sensitivity. Methods: Literature discussed different technical issues on how to minimize interactions between array elements and how to combine data from such elements to yield optimum Signal-to-Noise Ratio images. However, image quality strongly depends upon the correct coil position over the heart and of one array coil portion with respect to the other. Results: In particular, simple errors in coil positioning could cause artifacts carrying to an inaccurate interpretation of cardiac magnetic resonance images. Conclusion: This paper describes the effect of array elements misalignment, starting from coil simulation to cardiac magnetic resonance acquisitions with a 1.5 T scanner. </P><P> Phased-array coil simulation was performed using the magnetostatic approach; moreover, phantom and in vivo experiments with a commercial 8-elements cardiac phased-array receiver coil permitted to estimate signal-to-noise ratio and B1 mapping for aligned and shifted coil.


2015 ◽  
Vol 76 (5) ◽  
pp. 1621-1628 ◽  
Author(s):  
Nikolai I. Avdievich ◽  
Ioannis A. Giapitzakis ◽  
Anke Henning

2011 ◽  
Vol 66 (4) ◽  
pp. 1192-1197 ◽  
Author(s):  
Curtis N. Wiens ◽  
Shawn J. Kisch ◽  
Jacob D. Willig-Onwuachi ◽  
Charles A. McKenzie

2006 ◽  
Vol 49 (6) ◽  
pp. 1658-1664 ◽  
Author(s):  
Tao JIANG ◽  
Jun LIN ◽  
Tong-Lin LI ◽  
Zu-Bin CHEN ◽  
Lin-Hang ZHANG

Sign in / Sign up

Export Citation Format

Share Document