scholarly journals Protective effects of melatonin on changes occurring in the experimental autoimmune encephalomyelitis model of Multiple Sclerosis

Author(s):  
B.M. Escribano ◽  
A. Muñoz-Jurado ◽  
J. Caballero-Villarraso ◽  
M.E. Valdelvira ◽  
A.I. Giraldo ◽  
...  
2008 ◽  
Vol 15 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Laura Garay ◽  
Maria Claudia Gonzalez Deniselle ◽  
Lobke Gierman ◽  
Maria Meyer ◽  
Analia Lima ◽  
...  

2005 ◽  
Vol 185 (2) ◽  
pp. 243-252 ◽  
Author(s):  
M Merle Elloso ◽  
Kristen Phiel ◽  
Ruth A Henderson ◽  
Heather A Harris ◽  
Steven J Adelman

Estrogens have been shown to modulate disease activity in experimental autoimmune encephalomyelitis (EAE), the mouse model for multiple sclerosis. Consistent with these findings, the severity of disease is reduced in pregnant women with multiple sclerosis when levels of estrogens are high. Estrogens bind to two known estrogen receptors (ER), ERα and ERβ. The relative contribution of these receptors to estrogen-mediated suppression of EAE was explored using ER-selective ligands. The ER antagonist ICI 182 780 reversed the suppressive effects of 17β-estradiol (E2), demonstrating that the protective effects of E2 on disease are dependent upon ER signaling. Treatment of SJL mice with the ERα-selective agonist proteolipid protein (PPT) prior to the induction of disease resulted in suppression of clinical symptoms of disease, whereas treatment with an ERβ-selective agonist (WAY-202041) had no effect. Treatment of mice with PLP peptide 139–151 (PPT) was also associated with decreased immune responses associated with disease. Consistent with its lack of effect on disease, the ERβ agonist had minimal effects on immune responses. The use of selective estrogen receptor modulators (SERMs) in this model was also explored, and we show that raloxifene and WAY-138923 were also effective in suppressing disease. These results demonstrate the beneficial effects of estrogen receptor ligands, in particular ERα-selective ligands, and may have implications in the development of therapeutic strategies for multiple sclerosis.


Sign in / Sign up

Export Citation Format

Share Document