Manufacturing of fine-grained titanium by cryogenic milling and spark plasma sintering

2020 ◽  
Vol 772 ◽  
pp. 138783 ◽  
Author(s):  
Jiří Kozlík ◽  
Hanka Becker ◽  
Josef Stráský ◽  
Petr Harcuba ◽  
Miloš Janeček
2020 ◽  
Vol 321 ◽  
pp. 12029
Author(s):  
A. Terynková ◽  
J. Kozlík ◽  
K. Bartha ◽  
T. Chráska ◽  
J. Stráský

In this study, Ti-15Mo alloy powder was prepared by gas atomization and subsequent cryogenic milling in order to achieve ultra-fine grained microstructure. Both milled and non-milled powders were compacted by spark plasma sintering (SPS) at temperature of 800 °C for different sintering times up to 6 minutes. Sintering temperature and time affect porosity, microstructure and phase composition of the alloy. Milled powder can be sintered at comparatively lower temperature to achieve fully dense material. Sintering below β-transus temperature results in α+β-structure. Furthermore, amount of α-phase is higher in the material sintered from the milled powder due to increased oxygen content and also due to refined microstructure which facilitates α-phase precipitation. Mechanical properties are also affected by formation of ω-phase during uncontrolled cooling in the SPS machine.


2020 ◽  
Vol 56 (12) ◽  
pp. 1307-1313
Author(s):  
L. S. Alekseeva ◽  
A. V. Nokhrin ◽  
M. S. Boldin ◽  
E. A. Lantsev ◽  
A. I. Orlova ◽  
...  

2018 ◽  
Vol 941 ◽  
pp. 1276-1281
Author(s):  
Anna Terynková ◽  
Jiří Kozlík ◽  
Kristína Bartha ◽  
Tomáš Chráska ◽  
Josef Stráský

Ti-15Mo alloy belongs to metastable β-Ti alloys that are currently used in aircraft manufacturing and Ti15Mo alloy is a perspective candidate for the use in medicine thanks to its biotolerant composition. In this study, Ti15Mo alloy was prepared by advanced techniques of powder metallurgy. The powder of gas atomized Ti-15Mo alloy was subjected to cryogenic milling to achieve ultra-fine grained microstructure within the powder particles. Powder was subsequently compacted using spark plasma sintering (SPS). The effect of cryogenic milling on the microstructure and phase composition of final bulk material after SPS was studied by scanning electron microscopy. Sintering at 750°C was not sufficient for achieving full density in gas atomized powder, while milled material could be successfully sintered at this temperature. Alpha phase particles precipitated during sintering and their size, as well as the size of beta matrix grains, was strongly affected by the sintering temperature.


2021 ◽  
Vol 1758 (1) ◽  
pp. 012031
Author(s):  
A A Popov ◽  
V N Chuvil’deev ◽  
M S Boldin ◽  
A V Nokhrin ◽  
E A Lantsev ◽  
...  

2004 ◽  
Vol 449-452 ◽  
pp. 1113-1116 ◽  
Author(s):  
Young Soon Kwon ◽  
Ji Soon Kim ◽  
Jong Jae Park ◽  
Hwan Tae Kim ◽  
Dina V. Dudina

Microstructural change of TiB2-Cu nanocomposite during spark plasma sintering (SPS) was investigated. Under simultaneous action of pressure, temperature and pulse electric current titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a interpenetrating phase composite with a fine-grained skeleton. Increase of SPS temperatures and holding times promotes the densification of sintered compacts due to local melting of copper matrix.


2004 ◽  
Vol 83 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Baorang Li ◽  
Xiaohui Wang ◽  
Longtu Li ◽  
Hui Zhou ◽  
Xingtao Liu ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1323 ◽  
Author(s):  
Yanlin Pan ◽  
Daoping Xiang ◽  
Ning Wang ◽  
Hui Li ◽  
Zhishuai Fan

Fine-grained W-6Ni-4Mn alloys were fabricated by spark plasma sintering (SPS) using mechanical milling W, Ni and Mn composite powders. The relative density of W-6Ni-4Mn alloy increases from 71.56% to 99.60% when it is sintered at a low temperature range of 1000–1200 °C for 3 min. The spark plasma sintering process of the alloy can be divided into three stages, which clarify the densification process of powder compacts. As the sintering temperature increases, the average W grain size increases but remains at less than 7 µm and the distribution of the binding phase is uniform. Transmission electron microscopy (TEM) observation reveals that the W-6Ni-4Mn alloy consists of the tungsten phase and the γ-(Ni, Mn, W) binding phase. As the sintering temperature increases, the Rockwell hardness and bending strength of alloys initially increases and then decreases. The optimum comprehensive hardness and bending strength of the alloy are obtained at 1150 °C. The main fracture mode of the alloys is W/W interface fracture.


2020 ◽  
Vol 40 (1) ◽  
pp. 1-11 ◽  
Author(s):  
S. Gavarini ◽  
J. Baillet ◽  
N. Millard-Pinard ◽  
V. Garnier ◽  
C. Peaucelle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document