Creep damage characteristics and evolution of HR3C austenitic steel during long term creep

Author(s):  
Jie Zhang ◽  
Zhengfei Hu ◽  
Guoli Zhai ◽  
Zhen Zhang ◽  
Ziyi Gao
2018 ◽  
Vol 28 (6) ◽  
pp. 877-895 ◽  
Author(s):  
J Christopher ◽  
BK Choudhary

A detailed analysis has been performed for the prediction of long-term creep behaviour of tempered martensitic Grade 91 steel at 873 K using the microstructure-based creep damage mechanics approach. Necessary modifications have been made into the original kinetic creep law proposed by Dyson and McLean in order to account for the influence of microstructural damages arising from the coarsening of M23C6 and conversion of useful MX precipitates into deleterious Z-phase on creep behaviour of the steel. An exponential rate relationship has been introduced for the evolution of number density of MX precipitates with time. It has been shown that the developed model adequately predicts the experimental long-term creep strain–time as well as creep rate-time data. The role of Z-phase on long-term creep behaviour of Grade 91 steel has also been discussed.


2010 ◽  
Vol 527 (16-17) ◽  
pp. 4424-4430 ◽  
Author(s):  
Bicao Peng ◽  
Hongxiang Zhang ◽  
Jie Hong ◽  
Jiaqiang Gao ◽  
Hanqian Zhang ◽  
...  

Author(s):  
Nazrul Islam ◽  
David J. Dewees ◽  
Tasnim Hassan

A continuum damage mechanics (CDM) coupled unified viscoplasticity model has been developed to predict the creep-fatigue life of modified Grade 91 steel. A tertiary creep model termed MPC-Omega codified in Part 10 of API (and also implemented in the ASME BP&V Code for Grade 22V and more recently Grade 91 Steel) is also employed for creep damage evaluation. As MPC-Omega has a direct relationship with Larson-Miller parameter (LMP) coefficients, creep damage coefficients in the unified constitutive model (UCM) are tied with MPC-Omega coefficients in order to utilize WRC and API 579-1 Grade 91 creep rupture database. The model is validated against long-term creep, LCF, creep-fatigue and TMF experimental responses at T = 20–600°C.


2007 ◽  
Vol 561-565 ◽  
pp. 2217-2220 ◽  
Author(s):  
Hassan Ghassemi Armaki ◽  
Kyosuke Yoshimi ◽  
Kouichi Maruyama ◽  
Mitsuru Yoshizawa ◽  
Masaaki Igarashi

The apparent activation energy for rupture life sometimes changes from a high value of short term creep to a low value of long term creep. This change results in overestimation of rupture life recognized recently in advanced high Cr ferritic steels. The present study examined how to detect the decrease of activation energy in 9-12 %Cr steels with tempered martensitic lath microstructure. During aging without stress hardness of the tempered martensite microstructures remains almost constant in short term, whereas it decreases with increasing time after long term exposure. The onset of hardness drop can be a good measure of the decrease of activation energy. Causes of the hardness drop and the decrease of activation energy are discussed.


2017 ◽  
Vol 681 ◽  
pp. 74-84 ◽  
Author(s):  
Zhen Zhang ◽  
Zhengfei Hu ◽  
Haoyun Tu ◽  
Siegfried Schmauder ◽  
Gaoxiang Wu

Author(s):  
Pertti Auerkari ◽  
Stefan Holmstro¨m ◽  
Juhani Rantala ◽  
Jorma Salonen

Defects can pre-exist and grow by creep in structures subjected to loading at high temperatures. As structural integrity is not necessarily conveniently predicted and managed by applying design and life assessment techniques intended for nominally defect-free material, it is important that methods are available for quantified and safe assessment of defects. In addition to the assessment methods, also materials behaviour will affect the likely outcome. In particular, ductility of the materials is important, and unfortunately ductility tends to decrease when shifting from short-term testing to long term creep conditions. In this paper, two examples are shown of materials with such ductility effects when combined with defects. The first example involves 316H stainless steel subjected to creep loading with an extensive crack-like defect, resulting in a transformation from microscopically ductile to brittle intergranular cracking within a relatively modest time span. The second example will demonstrate a corresponding shift in OFP copper that shows a radical ductility and life reduction in creep when including so small weld defects that they would be undetectable in conventional NDT.


Sign in / Sign up

Export Citation Format

Share Document