continuum damage mechanics
Recently Published Documents


TOTAL DOCUMENTS

785
(FIVE YEARS 114)

H-INDEX

49
(FIVE YEARS 6)

2021 ◽  
pp. 105678952110681
Author(s):  
Taehyo Park ◽  
Bilal Ahmed ◽  
George Z Voyiadjis

In the past few decades, extensive research on concrete modeling to predict behavior, crack propagation, microcrack coalescence by utilizing different approaches (fracture mechanics, continuum damage mechanics) were investigated theoretically and numerically. The presented paper aims to review the theoretical work of continuum concrete damage and plasticity modeling in part I of the work. The detailed theoretical work is presented with some of the supporting work related to multiscale modeling and phase-field modeling is also part of this paper. Few other applications related to rate-dependent models and fatigue in concrete are also discussed. In part II of this work, the review of numerical work limited to finite element is presented. Some open issues in concrete damage modeling and future research needed are also discussed in part II.


Author(s):  
Marco Lo Cascio ◽  
Ivano Benedetti

Numerical tools which are able to predict and explain the initiation and propagation of damage at the microscopic level in heterogeneous materials are of high interest for the analysis and design of modern materials. In this contribution, we report the application of a recently developed numerical scheme based on the coupling between the Virtual Element Method (VEM) and the Boundary Element Method (BEM) within the framework of continuum damage mechanics (CDM) to analyze the progressive loss of material integrity in heterogeneous materials with complex microstructures. VEM is a novel numerical technique that, allowing the use of general polygonal mesh elements, assures conspicuous simplification in the data preparation stage of the analysis, notably for computational micro-mechanics problems, whose analysis domain often features elaborate geometries. BEM is a widely adopted and efficient numerical technique that, due to its underlying formulation, allows reducing the problem dimensionality, resulting in substantial simplification of the pre-processing stage and in the decrease of the computational effort without affecting the solution accuracy. The implemented technique has been applied to an artificial microstructure, consisting of the transverse section of a circular shaped stiff inclusion embedded in a softer matrix. BEM is used to model the inclusion that is supposed to behave within the linear elastic range, while VEM is used to model the surrounding matrix material, developing more complex nonlinear behaviors. Numerical results are reported and discussed to validate the proposed method.


2021 ◽  
pp. 105678952110632 ◽  
Author(s):  
George Z Voyiadjis ◽  
Bilal Ahmed ◽  
Taehyo Park

In this part II, companion article, we present the numerical review of continuum damage mechanics and plasticity in the context of finite element. The numerical advancements in local, nonlocal, and rate-dependent models are presented. The numerical algorithms, type of elements utilized in numerical analysis, the commercial software’s or in-house codes used for the analysis, iterative schemes, explicit or implicit approaches to solving finite element equations, and degree of continuity of element are discussed in this part. Lastly, some open issues in concrete damage modeling and future research needed are also discussed.


Author(s):  
Rudraprasad Bhattacharyya ◽  
Sankaran Mahadevan

Abstract A methodology to account for the effect of epistemic uncertainty (regarding model parameters) on the strength prediction of carbon fiber reinforced polymer (CFRP) composite laminates is presented. A three-dimensional concurrent multiscale physics modeling framework is considered. A continuum damage mechanics-based constitutive relation is used for multiscale analysis. The parameters for the constitutive model are unknown and need to be calibrated. A least squares-based approach is employed for the calibration of model parameters and a model discrepancy term. The calibrated constitutive model is validated quantitatively using experimental data for both unnotched and open-hole specimens with different composite layups. The quantitative validation results are used to indicate further steps for model improvement.


Author(s):  
Ba Nghiep Nguyen ◽  
Naveen Karri ◽  
Taylor Mason ◽  
James Fitzpatrick ◽  
Brian Koeppel

Abstract This work applies a multiscale mechanistic damage model developed for brittle ceramics and implemented in commercial finite element (FE) packages via user subroutines to study progressive damage in solid oxide fuel cells (SOFC) subjected to thermomechanical loading under normal operating and shutdown conditions including redox effects. The damage model captures the micromechanics of stiffness reduction due to material porosity change and microcracking and integrates the as-obtained stiffness reduction law into a continuum damage mechanics (CDM) formulation for the evolution of microcracks up to fracture. The volumetric “swelling” that occurs during redox is treated in constitutive modeling similarly to thermal expansion, but swelling strains are irreversible. This damage model was first validated through predictions of strength and stress-strain response for the SOFC ceramic electrode materials. Next, it has been applied to predict the potential for degradation in a generic planar SOFC stack with large active area cells. Multicell stack models were simulated in both co-flow and counter-flow configurations. In addition, a constant temperature redox cycle was also simulated to capture overall cell electrode damage due to volumetric swelling of the nickel (Ni)-based anode in the anode-supported cells.


Sign in / Sign up

Export Citation Format

Share Document